Evaluation of toxicity of zinc oxide nanorods on green microalgae of freshwater and marine ecosystems

Environmental Chemistry and Ecotoxicology - Tập 3 - Trang 85-90 - 2021
Ana Claudia O. de Almeida1, Lais F. dos Santos1, Denice S. Vicentini2, William G. Matias2, Silvia P. Melegari1
1Center for Marine Studies, Federal University of Parana - UFPR, Campus Pontal do Paraná, Av. Beira-Mar, 83255-976 Pontal do Paraná, PR, Brazil
2Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário Trindade, 88040-970 Florianópolis, SC, Brazil

Tài liệu tham khảo

Vijayakumar, 2016, Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications, Biomed. Pharmacother., 84, 1213, 10.1016/j.biopha.2016.10.038 Kumar, 2017, Antimicrobial properties of ZnO nanomaterials: a review, Ceram. Int., 43, 3940, 10.1016/j.ceramint.2016.12.062 Ma, 2013, Ecotoxicity of manufactured ZnO nanoparticles—a review, Environ. Pollut., 172, 76, 10.1016/j.envpol.2012.08.011 Blinova, 2010, Ecotoxicity of nanoparticles of CuO and ZnO in natural water, Environ. Pollut., 158, 41, 10.1016/j.envpol.2009.08.017 Park, 2017, Considerations for safe innovation: the case of graphene, ACS Nano, 11, 9574, 10.1021/acsnano.7b04120 Neff, 2002, Zinc in the ocean, 175 World Health Organization, 2003, Zinc in drinking-water, 1 Melegari, 2019, Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials?, Chemosphere, 224, 237, 10.1016/j.chemosphere.2019.02.093 Aravantinou, 2015, Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae, Ecotoxicol. Environ. Saf., 114, 109, 10.1016/j.ecoenv.2015.01.016 Samei, 2019, The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata, Environ. Sci. Pollut. Res., 26, 2409, 10.1007/s11356-018-3787-z Aravantinou, 2017, Long-term toxicity of ZnO nanoparticles to Scenedesmus rubescens cultivated in different media, Sci. Rep., 7, 1, 10.1038/s41598-017-13517-7 Zhang, 2016, Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: attention to the accumulation of intracellular Zn, Aquat. Toxicol., 178, 158, 10.1016/j.aquatox.2016.07.020 Franklin, 2007, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl 2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., 41, 8484, 10.1021/es071445r Rocha, 2015, Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview, Mar. Environ. Res., 10.1016/j.marenvres.2015.06.013 Bacchetta, 2016, Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach, Environ. Res., 148, 376, 10.1016/j.envres.2016.04.028 Poynton, 2011, Differential gene expression in daphnia magna suggests distinct modes of action and bioavailability for Zno nanoparticles and Zn ions, Environ. Sci. Technol., 45, 762, 10.1021/es102501z Gonçalves, 2018, Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests, Aquat. Toxicol., 197, 32, 10.1016/j.aquatox.2018.02.002 Bacchetta, 2017, Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna, Environ. Res., 152, 128, 10.1016/j.envres.2016.10.006 Adam, 2015, The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios, Water Res., 68, 249, 10.1016/j.watres.2014.10.001 Ivask, 2014, Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review, Nanotoxicology, 8, 57, 10.3109/17435390.2013.855831 Skjolding, 2014, Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio), Aquat. Toxicol., 157, 101, 10.1016/j.aquatox.2014.10.005 Hao, 2013, Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts, Ecotoxicol. Environ. Saf., 91, 52, 10.1016/j.ecoenv.2013.01.007 Xiong, 2011, Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage, Sci. Total Environ., 409, 1444, 10.1016/j.scitotenv.2011.01.015 Mayton, 2019, Influence of nano-CuO and -TiO2 on deposition and detachment of Escherichia coli in two model systems, Environ. Sci. Nano., 10.1039/C9EN00857H Padmavathy, 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 9, 10.1088/1468-6996/9/3/035004 Li, 2013, Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli, Environ. Pollut., 173, 97, 10.1016/j.envpol.2012.10.026 Baek, 2011, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus, Sci. Total Environ., 409, 1603, 10.1016/j.scitotenv.2011.01.014 Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012 Long, 2006, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environ. Sci. Technol., 40, 4346, 10.1021/es060589n Xia, 2006, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6, 1794, 10.1021/nl061025k de Rossetto, 2014, Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri, Sci. Total Environ., 490, 807, 10.1016/j.scitotenv.2014.05.056 Stevenson, 2014, Ecological assessments with algae: a review and synthesis, J. Phycol., 50, 437, 10.1111/jpy.12189 Brooks, 2016, Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?, Environ. Toxicol. Chem., 35, 6, 10.1002/etc.3220 Korhonen, 2013, Temporal variation of diatom assemblages in oligotrophic and eutrophic streams, Eur. J. Phycol., 48, 141, 10.1080/09670262.2013.779390 Štork, 2013, Changes of metal-induced toxicity by H2O2/NO modulators in Scenedesmus quadricauda (Chlorophyceae), Environ. Sci. Pollut. Res., 20, 5502, 10.1007/s11356-013-1541-0 Prata, 2018, Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii, Aquat. Toxicol., 197, 143, 10.1016/j.aquatox.2018.02.015 ABNT, 2018 OECD, 2011 ABNT, 2013, 27 Valer, 1998, Ecotoxicologia aquática inibição do crescimento de microalgas marinha, Acta Limnol. Bras., 11, 149 EPA, 2002 Melegari, 2013, Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii, Aquat. Toxicol., 142–143, 431, 10.1016/j.aquatox.2013.09.015 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Baalousha, 2013, Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles, Sci. Total Environ., 454–455, 119, 10.1016/j.scitotenv.2013.02.093 Kashiwada, 2006, Distribution of nanoparticles in the see-through medaka (Oryzias latipes), Environ. Health Perspect., 114, 1697, 10.1289/ehp.9209 Klaine, 2008, 1825 Wong, 2010, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility, 609 Miller, 2010, Impacts of metal oxide nanoparticles on marine phytoplankton, Environ. Sci. Technol., 44, 7329, 10.1021/es100247x Samei, 2019, The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata, Environ. Sci. Pollut. Res., 26, 2409, 10.1007/s11356-018-3787-z Suman, 2015, Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis, Ecotoxicol. Environ. Saf., 113, 23, 10.1016/j.ecoenv.2014.11.015 Auffan, 2009, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro, Environ. Pollut., 157, 1127, 10.1016/j.envpol.2008.10.002