Evaluation of toxicity of zinc oxide nanorods on green microalgae of freshwater and marine ecosystems
Tài liệu tham khảo
Vijayakumar, 2016, Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications, Biomed. Pharmacother., 84, 1213, 10.1016/j.biopha.2016.10.038
Kumar, 2017, Antimicrobial properties of ZnO nanomaterials: a review, Ceram. Int., 43, 3940, 10.1016/j.ceramint.2016.12.062
Ma, 2013, Ecotoxicity of manufactured ZnO nanoparticles—a review, Environ. Pollut., 172, 76, 10.1016/j.envpol.2012.08.011
Blinova, 2010, Ecotoxicity of nanoparticles of CuO and ZnO in natural water, Environ. Pollut., 158, 41, 10.1016/j.envpol.2009.08.017
Park, 2017, Considerations for safe innovation: the case of graphene, ACS Nano, 11, 9574, 10.1021/acsnano.7b04120
Neff, 2002, Zinc in the ocean, 175
World Health Organization, 2003, Zinc in drinking-water, 1
Melegari, 2019, Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials?, Chemosphere, 224, 237, 10.1016/j.chemosphere.2019.02.093
Aravantinou, 2015, Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae, Ecotoxicol. Environ. Saf., 114, 109, 10.1016/j.ecoenv.2015.01.016
Samei, 2019, The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata, Environ. Sci. Pollut. Res., 26, 2409, 10.1007/s11356-018-3787-z
Aravantinou, 2017, Long-term toxicity of ZnO nanoparticles to Scenedesmus rubescens cultivated in different media, Sci. Rep., 7, 1, 10.1038/s41598-017-13517-7
Zhang, 2016, Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: attention to the accumulation of intracellular Zn, Aquat. Toxicol., 178, 158, 10.1016/j.aquatox.2016.07.020
Franklin, 2007, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl 2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., 41, 8484, 10.1021/es071445r
Rocha, 2015, Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview, Mar. Environ. Res., 10.1016/j.marenvres.2015.06.013
Bacchetta, 2016, Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach, Environ. Res., 148, 376, 10.1016/j.envres.2016.04.028
Poynton, 2011, Differential gene expression in daphnia magna suggests distinct modes of action and bioavailability for Zno nanoparticles and Zn ions, Environ. Sci. Technol., 45, 762, 10.1021/es102501z
Gonçalves, 2018, Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests, Aquat. Toxicol., 197, 32, 10.1016/j.aquatox.2018.02.002
Bacchetta, 2017, Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna, Environ. Res., 152, 128, 10.1016/j.envres.2016.10.006
Adam, 2015, The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios, Water Res., 68, 249, 10.1016/j.watres.2014.10.001
Ivask, 2014, Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review, Nanotoxicology, 8, 57, 10.3109/17435390.2013.855831
Skjolding, 2014, Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio), Aquat. Toxicol., 157, 101, 10.1016/j.aquatox.2014.10.005
Hao, 2013, Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts, Ecotoxicol. Environ. Saf., 91, 52, 10.1016/j.ecoenv.2013.01.007
Xiong, 2011, Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage, Sci. Total Environ., 409, 1444, 10.1016/j.scitotenv.2011.01.015
Mayton, 2019, Influence of nano-CuO and -TiO2 on deposition and detachment of Escherichia coli in two model systems, Environ. Sci. Nano., 10.1039/C9EN00857H
Padmavathy, 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 9, 10.1088/1468-6996/9/3/035004
Li, 2013, Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli, Environ. Pollut., 173, 97, 10.1016/j.envpol.2012.10.026
Baek, 2011, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus, Sci. Total Environ., 409, 1603, 10.1016/j.scitotenv.2011.01.014
Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012
Long, 2006, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environ. Sci. Technol., 40, 4346, 10.1021/es060589n
Xia, 2006, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6, 1794, 10.1021/nl061025k
de Rossetto, 2014, Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri, Sci. Total Environ., 490, 807, 10.1016/j.scitotenv.2014.05.056
Stevenson, 2014, Ecological assessments with algae: a review and synthesis, J. Phycol., 50, 437, 10.1111/jpy.12189
Brooks, 2016, Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?, Environ. Toxicol. Chem., 35, 6, 10.1002/etc.3220
Korhonen, 2013, Temporal variation of diatom assemblages in oligotrophic and eutrophic streams, Eur. J. Phycol., 48, 141, 10.1080/09670262.2013.779390
Štork, 2013, Changes of metal-induced toxicity by H2O2/NO modulators in Scenedesmus quadricauda (Chlorophyceae), Environ. Sci. Pollut. Res., 20, 5502, 10.1007/s11356-013-1541-0
Prata, 2018, Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii, Aquat. Toxicol., 197, 143, 10.1016/j.aquatox.2018.02.015
ABNT, 2018
OECD, 2011
ABNT, 2013, 27
Valer, 1998, Ecotoxicologia aquática inibição do crescimento de microalgas marinha, Acta Limnol. Bras., 11, 149
EPA, 2002
Melegari, 2013, Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii, Aquat. Toxicol., 142–143, 431, 10.1016/j.aquatox.2013.09.015
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Baalousha, 2013, Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles, Sci. Total Environ., 454–455, 119, 10.1016/j.scitotenv.2013.02.093
Kashiwada, 2006, Distribution of nanoparticles in the see-through medaka (Oryzias latipes), Environ. Health Perspect., 114, 1697, 10.1289/ehp.9209
Klaine, 2008, 1825
Wong, 2010, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility, 609
Miller, 2010, Impacts of metal oxide nanoparticles on marine phytoplankton, Environ. Sci. Technol., 44, 7329, 10.1021/es100247x
Samei, 2019, The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata, Environ. Sci. Pollut. Res., 26, 2409, 10.1007/s11356-018-3787-z
Suman, 2015, Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis, Ecotoxicol. Environ. Saf., 113, 23, 10.1016/j.ecoenv.2014.11.015
Auffan, 2009, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro, Environ. Pollut., 157, 1127, 10.1016/j.envpol.2008.10.002