Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alcaide F, Álvarez G, Guelfi D R V, Brillas E, Sirés I (2020). A stable CoSP/MWCNTs air-diffusion cathode for the photoelectro-Fenton degradation of organic pollutants at pre-pilot scale. Chemical Engineering Journal, 379: 122417
Assumpção M H M T, De Souza R F B, Rascio D C, Silva J C M, Calegaro M L, Gaubeur I, Paixao T R L C, Hammer P, Lanza M R V, Santos M C (2011). A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon, 49(8): 2842–2851
Barazesh J M, Hennebel T, Jasper J T, Sedlak D L (2015). Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Environmental Science & Technology, 49(12): 7391–7399
Bolton J R, Bircher K G, Tumas W, Tolman C A (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems-(IUPAC Technical Report). Pure and Applied Chemistry, 73(4): 627–637
Brillas E, Mur E, Casado J (1996). Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O-2-fed cathode. Journal of the Electrochemical Society, 143(3): L49–L53
Brillas E, Sires I, Oturan M A (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109(12): 6570–6631
Campos-Martin J M, Blanco-Brieva G, Fierro J L (2006). Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition in English, 45(42): 6962–6984
Chaplin B P (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52(3): 596–604
Chen Z, Chen S, Siahrostami S, Chakthranont P, Hahn C, Nordlund D, Dimosthenis S, Nørskov J K, Bao Z, Jaramillo T F (2017). Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. Reaction Chemistry & Engineering, 2(2): 239–245
Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M (2016). Hydrogen peroxide: A Key chemical for today’s sustainable development. ChemSusChem, 9(24): 3374–3381
Frangos P, Shen W H, Wang H J, Li X, Yu G, Deng S B, Huang J, Wang B, Wang Y J (2016). Improvement of the degradation of pesticide deethylatrazine by combining UV photolysis with electrochemical generation of hydrogen peroxide. Chemical Engineering Journal, 291: 215–224
Huber M M, Canonica S, Park G Y, Von Gunten U (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 37(5): 1016–1024
Lin S, Lu Y, Ye B, Zeng C, Liu G, Li J, Luo H, Zhang R (2020). Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process. Frontiers of Environmental Science & Engineering, 14(1): 12
Lu S, Wang N, Wang C (2018a). Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2. Frontiers of Environmental Science & Engineering, 12(3): 12
Lu Y B, Liu G L, Luo H P, Zhang R D (2017). Efficient in-situ production of hydrogen peroxide using a novel stacked electrosynthesis reactor. Electrochimica Acta, 248: 29–36
Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo T F, Nørskov J K, Cui Y (2018b). High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 1(2): 156–162
Oturan M A, Aaron J J, Oturan N, Pinson J (1999). Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pesticide Science, 55(5): 558–562
Paz E C, Aveiro L R, Pinheiro V S, Souza F M, Lima V B, Silva F L, Hammer P, Lanza M R V, Santos M C (2018). Evaluation of H2O2 electrogeneration and decolorization of Orange II azo dye using tungsten oxide nanoparticle-modified carbon. Applied Catalysis B: Environmental, 22: 436–445
Pérez J F, Llanos J, Sáez C, López C, Cañizares P, Rodrigo M A (2019). Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. Journal of Cleaner Production, 211: 1259–1267
Plakas K V, Sklari S D, Yiankakis D A, Sideropoulos G T, Zaspalis V T, Karabelas A J (2016). Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: Pilot-scale studies. Water Research, 91: 183–194
Qiang Z, Chang J H, Huang C P (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36(1): 85–94
Rezaei M, Warsinger D M, Lienhard V J H, Duke M C, Matsuura T, Samhaber W M (2018). Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Research, 139: 329–352
Salmerón I, Plakas K V, Sirés I, Oller I, Maldonado M I, Karabelas A J, Malato S (2018). Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Applied Catalysis B: Environmental, 242: 327–336
Sellers R M (1980). Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst (London), 105(1255): 950–954
Sheng Y P, Zhao Y, Wang X L, Wang R, Tang T (2014). Electrogeneration of H2O2 on a composite acetylene black-PTFE cathode consisting of a sheet active core and a dampproof coating. Electrochimica Acta, 133: 414–421
Stoerzinger K A, Risch M, Han B H, Shao-Horn Y (2015). Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catalysis, 5(10): 6021–6031
Tang C, Wang H F, Zhang Q (2018). Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Accounts of Chemical Research, 51(4): 881–889
Turkay O, Barisci S, Ozturk B, Ozturk H, Dimoglo A (2017a). Electroperoxone treatment of phenol: process comparison, the effect of operational parameters and degradation mechanism. Journal of the Electrochemical Society, 164(9): E180–E186
Turkay O, Ersoy Z G, Barisci S (2017b). Review—the application of an electro-peroxone process in water and wastewater treatment. Journal of the Electrochemical Society, 164(6): E94–E102
USEIA (2016). Annual Electric Sales, Revenue, and Average Price. Washington: U.S. Energy Information Administration
Valim R B, Reis R M, Castro P S, Lima A S, Rocha R S, Bertotti M, Lanza M R V (2013). Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support. Carbon, 61: 236–244
von Gunten U (2018). Oxidation processes in water treatment: are we on track? Environmental Science & Technology, 52(9): 5062–5075
von Sonntag C, von Gunten U (2012). Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications. London: IWA Publishing
Wang H, Yuan S, Zhan J, Wang Y, Yu G, Deng S, Huang J, Wang B (2015). Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Research, 80: 20–29
Wang H, Zhan J, Yao W, Wang B, Deng S, Huang J, Yu G, Wang Y (2018a). Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process. Water Research, 130: 127–138
Wang Y, Li X, Zhen L, Zhang H, Zhang Y, Wang C (2012). Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate. Journal of Hazardous Materials, 229–230: 115–121
Wang Y, Yu G, Deng S, Huang J, Wang B (2018b). The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. Chemosphere, 208: 640–654
Wang Y, Zhou W, Gao J, Ding Y, Kou K (2019). Oxidative modification of graphite felts for efficient H2O2 electrogeneration: Enhancement mechanism and long-term stability. Journal of Electroanalytical Chemistry, 833: 258–268
Warsinger D M, Swaminathan J, Guillen-Burrieza E, Arafat H A, Lienhard V J H (2015). Scaling and fouling in membrane distillation for desalination applications: A review. Desalination, 356: 294–313
WHO (2011). Guidelines for Drinking-Water Quality, 4th ed. Geneva: World Health Organization, 324
Xia G, Wang H, Zhan J, Yin X, Wu X, Yu G, Wang Y, Wu M (2020). Evaluation of the stability of polyacrylonitrile-based carbon fiber electrode for hydrogen peroxide production and phenol mineralization during electro-peroxone process. Chemical Engineering Journal, 396: 125291
Xia G, Wang Y, Wang B, Huang J, Deng S, Yu G (2017). The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process. Water Research, 118: 26–38
Yang S, Verdaguer-Casadevall A, Arnarson L, Silvioli L, Čolić V, Frydendal R, Rossmeisl J, Chorkendorff I, Stephens I E L (2018). Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catalysis, 8(5): 4064–4081
Yao W, Ur Rehman S W, Wang H, Yang H, Yu G, Wang Y (2018). Pilotscale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process. Water Research, 138: 106–117
Yu X M, Zhou M H, Ren G B, Ma L (2015). A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chemical Engineering Journal, 263: 92–100
Yuan S, Li Z X, Wang Y J (2013). Effective degradation of methylene blue by a novel electrochemically driven process. Electrochemistry Communications, 29: 48–51
Zhang H, Chen S, Zhang H G, Fan X F, Cao C, Yu H T, Quan X (2019). Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 13(2): 18
Zhang X K, Zhou Y, Zhao C, Sun Z H, Zhang Z G, Mirza Z A, Saylor G, Zhai J, Zheng H L (2016). Electric field induced activated carbon fiber (ACF) cathode transition from an initiator/a promoter into an electrocatalyst in ozonation process. Chemical Engineering Journal, 304: 129–133