Evaluation of the in vitro skin permeation of antiviral drugs from penciclovir 1% cream and acyclovir 5% cream used to treat herpes simplex virus infection
Tóm tắt
Herpes simplex virus infection (HSV) is a common and ubiquitous infection of the skin which causes mucocutaneous lesions called cold sores (herpes labialis) or fever blisters. It is estimated that approximately 80% of the population worldwide are carriers of the Herpes simplex virus, approximately 40% suffer from recurrent recurrent infections. This study evaluates the in vitro skin permeation and penetration of penciclovir and acyclovir from commercialized creams for the treatment of herpes labialis (cold sores), using non viable excised human abdominal skin samples, which were exposed to 5 mg/cm2 of acyclovir 5% cream or penciclovir 1% cream. After 24 h of cream application, excess cream was washed off and layers of stratum corneum were removed by successive tape stripping. Amounts of active ingredients having penetrated through the skin were measured, as well as the amounts in the washed-off cream, in skin strips and creams remaining in the skin. Molecular modelling was used to evaluate physico-chemical differences between the drugs. Western blot analysis enabled to determine whether the marker of basal cells keratin 5 could be detected in the various tape strips. Application of penciclovir 1% cream yielded higher concentration of drug in the deeper layers of the epidermis as well as a higher drug flux through the skin. Molecular modelling showed two higher hydrophobic moieties for acyclovir. Presence of the basal cell marker keratin 5 was underscored in the deeper tape strips from the skin, giving evidence that both drugs can reach their target cells. Penciclovir 1% cream has the tendency to facilitate the diffusion of the drug through the stratum corneum into the deeper epidermis layers, in which it could reach the target basal cells at effective therapeutical concentration. The small difference in the surface properties between both molecules might also contribute to favour the passage of penciclovir through the epidermis into the deeper basal cells.
Tài liệu tham khảo
Gold D, Corey L: Acyclovir Prophylaxis for Herpes Simplex Virus Infection. Antimicrob Agents Chemother 1987, 31: 361–367.
Hamuy R, Berman B: Treatment of Herpes Simplex Virus Infections With Topical Antiviral Agents. Eur J Dermatol 1998, 8: 310–319.
Raborn GW, Martel AY, Lassonde M, Lewis MA, Boon R, Spruance SL: Effective Treatment of Herpes Simplex Labialis With Penciclovir Cream: Combined Results of Two Trials. J Am Den Assoc 2002, 133: 303–309.
Spruance SL, Rea TL, Thoming C, Tucker R, Saltzman R, Boon R: Penciclovir Cream for the Treatment of Herpes Simplex Labialis. A Randomized, Multicenter, Double-Blind, Placebo-Controlled Trial. Topical Penciclovir Collaborative Study Group. JAMA 1997, 277: 1374–1379. 10.1001/jama.277.17.1374
Visalli RJ, Courtney RJ, Meyers C: Infection and Replication of Herpes Simplex Virus Type 1 in an Organotypic Epithelial Culture System. Virology 1997, 230: 236–243. 10.1006/viro.1997.8484
Jarvis CA, McGuigan C, Heard CM: In Vitro Delivery of Novel, Highly Potent Anti-Varicella Zoster Virus Nucleoside Analogues to Their Target Site in the. Pharm Res 2004,21(6):914–919. 10.1023/B:PHAM.0000029277.60760.43
Marzulli FN: Barriers to Skin Penetration. J Invest Dermatol 1962, 39: 387–393.
Kleymann G: Novel Agents and Strategies to Treat Herpes Simplex Virus Infections. Expert Opin Investig Drugs 2003, 12: 165–183. 10.1517/13543784.12.2.165
Wagner H, Kostka KH, Lehr CM, Schaefer UF: Human Skin Penetration of Flufenamic Acid: in Vivo/in Vitro Correlation (Deeper Skin Layers) for Skin Samples From the Same Subject. J Invest Dermatol 2002, 118: 540–544. 10.1046/j.0022-202x.2001.01688.x
Guy RH, Carlstrom EM, Bucks DA, Hinz RS, Maibach HI: Percutaneous Penetration of Nicotinates: in Vivo and in Vitro Measurements. J Pharm Sci 1986, 75: 968–972. 10.1002/jps.2600751012
Wagner H, Kostka KH, Lehr CM, Schaefer UF: Drug Distribution in Human Skin Using Two Different in Vitro Test Systems: Comparison With in Vivo Data. Pharm Res 2000, 17: 1475–1481. 10.1023/A:1007648807195
Franz TJ: Kinetics of Cutaneous Drug Penetration. Int J Dermatol 1983, 22: 499–505. 10.1111/j.1365-4362.1983.tb02187.x
Moser K, Kriwet K, Naik A, Kalia YN, Guy RH: Passive Skin Penetration Enhancement and Its Quantification in Vitro. Eur J Pharm Biopharm 2001, 52: 103–112. 10.1016/S0939-6411(01)00166-7
Rolland A: Localization of Drugs in the Skin. In In Vitro Percutaneous Absorption: principles, Fundamentals and Applications. Edited by: Bronaugh RL, Maibach HI. CRC Press Boca Raton; 1991:137–156.
Schaefer H, Redelmeier TE: Structure and Dynamics of the skin barrier. Skin barrier: Principles of Percutaneous Absorption. Karger Basel 1996, 1–42.
Bronaugh RL, Stewart RF, Simon M: Methods for in Vitro Percutaneous Absorption Studies. VII: Use of Excised Human Skin. J Pharm Sci 1986, 75: 1094–1097. 10.1002/jps.2600751115
Skin Absorption – In Vitro Method. OECD [Organisation for Economic Cooperation and Development]. Guideline 428 2004.
Ertl P, Muhlbacher J, Rohde B, Selzer P: Web-Based Cheminformatics and Molecular Property Prediction Tools Supporting Drug Design and Development at Novartis. SAR QSAR Environ Res 2003, 4: 321–328. 10.1080/10629360310001673917
Surber C, Schwarb FP, Smith EW: Tape-Stripping Technique. J Toxicol Cut & Ocular Toxicol 2001, 20: 461–474. 10.1081/CUS-120001870
Williams AC, Barry BW: Penetration Enhancers. Adv Drug Deliv Rev 2004, 56: 603–618. 10.1016/j.addr.2003.10.025
Brazzini B, Pimpinelli N: New and Established Topical Corticosteroids in Dermatology: Clinical Pharmacology and Therapeutic Use. Am J Clin Dermatol 2002, 3: 47–58. 10.2165/00128071-200203010-00005
Menon GK, Elias PM: Morphologic Basis for a Pore-Pathway in Mammalian Stratum Corneum. Skin Pharmacol 1997, 10: 235–246. 10.1159/000211511
Sandt J, Roguet R, Cohen C, Esdaile D, Ponec M, Corsini E, Barker C, Fusenig N, Liebsch M, Benford D, de Brugerolles de Fraissinette A, Fartasch M: The Use of Human keratinocytes and Human Skin Models for Predicting Skin Irritation. Atla 1999, 27: 723–743.
Weinberg A, Bate BJ, Masters HB, Schneider SA, Clark JC, Wren CG, Allaman JA, Levin MJ: In Vitro Activities of Penciclovir and Acyclovir Against Herpes Simplex Virus Types 1 and 2. Antimicrob Agents Chemother 1992, 36: 2037–2038.
Earnshaw DL, Bacon TH, Darlison SJ, Edmonds K, Perkins RM, Vere Hodge R: A Mode of Antiviral Action of Penciclovir in MRC-5 Cells Infected With Herpes Simplex Virus Type 1 (HSV-1), HSV-2, and Varicella-Zoster Virus. Antimicrob Agents Chemother 1992, 36: 2747–2757.
Hayden FG: Antimicrobial agents-antiviral agents (nonretroviral). Tenth edition. Mc Graw Hill Medical Publishing Division New-York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, New Delhi, San Juan, Seoul, Singapore, Sidney, Toronto; 2001.
Reusser P: Herpesvirus Resistance to Antiviral Drugs: a Review of the Mechanisms, Clinical Importance and Therapeutic Options. J Hosp Infect 1996, 33: 235–248. 10.1016/S0195-6701(96)90010-9
Wester RC, Christoffel J, Hartway T, Poblete N, Maibach HI, Forsell J: Human cadaver skin viability for in vitro percutaneous absorption: storage and detrimental effects of heat-separation and freezing. Pharm Res 1998, 15: 82–84. 10.1023/A:1011904921318
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-5945/9/3/prepub