Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images

NDT & E International - Tập 42 Số 7 - Trang 644-651 - 2009
Victor Hugo C. de Albuquerque1, Auzuir Ripardo de Alexandria2, Paulo César Cortez3, João Manuel R. S. Tavares1
1Instituto de Engenharia Mecânica e Gestão Industrial (INEGI)/Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecânica (DEMec), Rua Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
2Centro Federal de Educação Tecnológica (CEFETCE), NSMAT, Indústria, Av. Treze de Maio, 2081, 60040-531, Fortaleza, Ceará, Brazil
3Universidade Federal do Ceará, Departamento de Engenharia de Teleinformática, Caixa Postal 6007, 60.755-640, Fortaleza, Ceará, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Samarasinghe, 2006

Bhadeshia, 1999, Neural networks in materials science, ISIJ International, 39, 966, 10.2355/isijinternational.39.966

Bhadeshia, 2006

Miaoquan, 2004, Microstructural evolution and modelling of the hot compression of a TC6 titanium alloy, Materials Characterization, 49, 203

Kim, 2003, Prediction of welding parameters for pipeline welding using an intelligent system, The International Journal of Advanced Manufacturing Technology, 22, 713, 10.1007/s00170-003-1589-y

Kusiak, 2002, Modelling of microstructure and mechanical properties of steel using the artificial neural network, Journal of Materials Processing Technology, 127, 115, 10.1016/S0924-0136(02)00278-9

Xiao-li, 2005, Microstructure evolution model based on deformation mechanism of titanium alloy in hot forming, Transactions of nonferrous metals society of China, 15, 749

Biernacki, 2006, Prediction of properties of austempered ductile iron assisted by artificial neural network, Materials Science, 12, 11

Abdelhay, 2002, Application of artificial neural networks to predict the carbon content and the grain size for carbon steels, Egyptian Journal of Solids, 25, 229, 10.21608/ejs.2002.150480

Wang, 2007, Artificial neural network models for predicting flow stress and microstructure evolution of a hydrogenized titanium alloy, Key Engineering Materials, 353–358, 541, 10.4028/www.scientific.net/KEM.353-358.541

de Albuquerque, 2007, Image segmentation system for quantification of microstructures in metals using artificial neural networks, Revista Matéria, 12, 394

de Albuquerque, 2008, A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network, Nondestructive Testing and Evaluation, 23, 273, 10.1080/10589750802258986

Dobrzanski, 2007, Application of neural networks to classification of internal damages in steels working in creep service, Journal of Achievements in Materials and Manufacturing Engineering, 20, 303

de Santis, 2007, Optimal binarization of images by neural networks for morphological analysis of ductile cast iron, Pattern Analysis and Applications, 10, 125, 10.1007/s10044-006-0052-8

Haykin, 2009

McCullogh, 1988, A logical calculus of the ideas immanent in nervous activity, Neurocomputing: foundations of research book contents, 15

Plaut D, Nowlan SJ, Hinton GE. Experiments on learning by backpropagation. Technical Report CMU-CS, Computer Science Department, Carnegie—Mellon University; 1986.

Yin, 2005, Feature combination using boosting, Pattern Recognition Letters, 26, 2195, 10.1016/j.patrec.2005.03.029

Kohonen, 1982, Self-organized formation of topologically correct feature maps, Biological Cybernetics, 43, 59, 10.1007/BF00337288

Kohonen, 2001, 10.1007/978-3-642-56927-2