Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers

Yuchao Shao1, Paul B. Hatzinger2, Sheryl H. Streger2, Rachael T. Rezes2, Kung-Hui Chu1
1Zachry Department of Civil Engineering, Texas A&M University, College Station, USA
2APTIM, Lawrenceville, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12(2):105–126

Anderson JE, McCarty PL (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl Environ Microbiol 63(2):687–693

Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66(12):5259–5266

Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN et al (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 63(3):1096–1104

Brockman FJ, Payne W, Workman DJ, Soong A, Manley S, Hazen TC (1995) Effect of gaseous nitrogen and phosphorus injection on in situ bioremediation of a trichloroethylene-contaminated site. J Hazard Mater 41(2):287–298

Bussmann I, Rahalkar M, Schink B (2006) Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 56(3):331–344

Cho K-C, Lee DG, Roh H, Fuller ME, Hatzinger PB, Chu K-H (2013) Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater. Environ Pollut 178:350–360

Cho K-C, Lee DG, Fuller ME, Hatzinger PB, Condee CW, Chu K-H (2015) Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. J Hazard Mater 297:42–51

Cho KC, Fuller ME, Hatzinger PB, Chu KH (2016) Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in situ bioremediation. Sci Total Environ 569–570:1098–1106

Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63(6):2282–2289

Dedysh SN, Panikov NS, Liesack W, Großkopf R, Zhou J, Tiedje JM (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282(5387):281–284

Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50(3):955–969

Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52(1):251–261

Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43(3):299–308

Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54(1):151–156

Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670

Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57(3):472–479

Denver JM, Ator SW, Fischer JM, Harned DC, Schubert C, Szabo Z (2015) Water Quality in the north Atlantic Coastal Plain Surficial Aquifer System, U.C.O. (ed) Delaware, Maryland, New Jersey, New York, North Carolina, and Virginia, 1988–2009. https://pubs.usgs.gov/circ/1353/

DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME, Krema CL (1992) Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation 2(3):151–164

Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53(5):1231–1239

EPA (2016) Fact sheet on trichloroethylene (TCE)

EPA (2017) TRI releases for trichloroethylene in the 2015 TRI National Analysis-Industry Sector

Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29(27):6419–6427

Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

Hatzinger PB, Banerjee R, Rezes R, Streger SH, McClay K, Schaefer CE (2017) Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation 28(5):453–468

Iguchi H, Yurimoto H, Sakai Y (2011) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61(4):810–815

Islam T, Torsvik V, Larsen Ø, Bodrossy L, Øvreås L, Birkeland N-K (2016) Acid-tolerant moderately thermophilic methanotrophs of the Class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Front Microbiol 7:851

Jablonski PE, Ferry JG (1992) Reductive dechlorination of trichloroethylene by the CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila. FEMS Microbiol Lett 96(1):55–59

Kim S, Bae W, Hwang J, Park J (2010) Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci Technol 62(9):1991–1997

Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart G-J (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77(16):5643–5654

Koh SC, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a Type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59(4):960–967

Lee S-W, Keeney DR, Lim D-H, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72(12):7503–7509

Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54(4):951–956

Lontoh S, Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol 64(3):1106–1114

Maymo-Gatell X, Y-t Chien, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568–1571

McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315

Mills JC, Wilson JT, Wilson BH, Wiedemeier TH, Freedman DL (2018) Quantification of TCE co-oxidation in groundwater using a 14C-assay. Groundwater Monit Remed 38(2):57–67

Nelson MJ, Montgomery S, O’neill E, Pritchard P (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52(2):383–384

Nelson M, Montgomery S, Pritchard P (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54(2):604–606

Neumann A, Wohlfarth G, Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem 271(28):16515–16519

Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55(11):2819–2826

Oldenhuis R, Oedzes JY, Van der Waarde J, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57(1):7–14

Pfiffner SM, Palumbo AV, Phelps TJ, Hazen TC (1997) Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. J Ind Microbiol Biotechnol 18(2):204–212

Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5(6):1061–1066

Roh H, Yu C-P, Fuller ME, Chu K-H (2009) Identification of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43(7):2505–2511

Semprini L, Hopkins GD, Roberts PV, Grbic-Galic D, McCarty PL (1991) A field evaluation of in-situ biodegradation of chlorinated ethenes: part 3 studies of competitive inhibition. Ground Water 29(2):239–250

Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323(1):1–12

Shukla AK, Vishwakarma P, Upadhyay S, Tripathi AK, Prasana H, Dubey SK (2009) Biodegradation of trichloroethylene (TCE) by methanotrophic community. Biores Technol 100(9):2469–2474

Terzenbach DP, Blaut M (1994) Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123(1–2):213–218

Tsien H-C, Brusseau GA, Hanson RS, Waclett L (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55(12):3155–3161

Uchiyama H, Nakajima T, Yagi O, Tabuchi T (1989a) Aerobic degradation of trichloroethylene at high concentration by a methane-utilizing mixed culture. Agric Biol Chem 53(4):1019–1024

Uchiyama H, Nakajima T, Yagi O, Tabuchi T (1989b) Aerobic degradation of trichloroethylene by a new type II methane-utilizing bacterium, strain M. Agric Biol Chem 53(11):2903–2907

Ul-Haque MF, Kalidass B, Vorobev A, Baral BS, DiSpirito AA, Semrau JD (2015) Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 81(7):2466–2473

Vainberg S, Condee CW, Steffan RJ (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36(9):1189–1197

Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61(10):2456–2463

Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7(6):507–511

Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49(1):242

Wymore RA, Lee MH, Keener WK, Miller AR, Colwell FS, Watwood ME, Sorenson KS (2007) Field evidence for intrinsic aerobic chlorinated ethene cometabolism by methanotrophs expressing soluble methane monooxygenase. Bioremediat J 11(3):125–139

Yang Y, Capiro NL, Marcet TF (2017) Organohalide respiration with chlorinated ethenes under low pH conditions 51(15):8579–8588

Yu C-P, Chu K-H (2005) A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol 39(24):9611–9619