Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data

NeuroImage - Tập 118 - Trang 219-230 - 2015
Brent C. Munsell1, Chong-Yaw Wee2, Simon S. Keller3, Bernd Weber4, Christian E. Elger4, Laura Angelica Tomaz da Silva5, Travis Nesland6, Martin Styner7, Dinggang Shen2, Leonardo Bonilha6
1College of Charleston
2Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
3Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
4Department of Epileptogy, University of Bonn, Germany
5Department of Computer Science, College of Charleston, Charleston, SC, USA
6Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
7Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aizerman, 1964, Theoretical foundations of the potential function method in pattern recognition learning, 821

Ashburner, 2000, Voxel-based morphometry — the methods, NeuroImage, 11, 805, 10.1006/nimg.2000.0582

Ashburner, 2001, Why voxel-based morphometry should be used, NeuroImage, 14, 1238, 10.1006/nimg.2001.0961

Avants, 2010, Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis, NeuroImage, 50, 1004, 10.1016/j.neuroimage.2010.01.041

Behrens, 2003, Characterization and propagation of uncertainty in diffusion-weighted MR imaging, Magn. Reson. Med., 50, 1077, 10.1002/mrm.10609

Behrens, 2007, Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?, NeuroImage, 34, 144, 10.1016/j.neuroimage.2006.09.018

Bien, 2013, Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009, J. Neurol. Neurochir. Psychiatr., 84, 54, 10.1136/jnnp-2011-301763

Bonilha, 2012, Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures, J. Neurol. Neurochir. Psychiatr., 83, 903, 10.1136/jnnp-2012-302476

Bonilha, 2012, Subtypes of medial temporal lobe epilepsy: influence on temporal lobectomy outcomes?, Epilepsia, 53, 1, 10.1111/j.1528-1167.2011.03298.x

Bonilha, 2013, Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy, Neurology, 81, 1704, 10.1212/01.wnl.0000435306.95271.5f

Bookstein, 2001, “Voxel-based morphometry” should not be used with imperfectly registered images, NeuroImage, 14, 1454, 10.1006/nimg.2001.0770

Brodie, 2002, Staged approach to epilepsy management, Neurology, 58, 2, 10.1212/WNL.58.8_suppl_5.S2

Bunea, 2011, Penalized least squares regression methods and applications to neuroimaging, NeuroImage, 55, 1519, 10.1016/j.neuroimage.2010.12.028

Carroll, 2009, Prediction and interpretation of distributed neural activity with sparse models, NeuroImage, 44, 112, 10.1016/j.neuroimage.2008.08.020

Casanova, 2011, High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization, Front Neuroinform, 5, 22, 10.3389/fninf.2011.00022

Casanova, 2012, Combining graph and machine learning methods to analyze differences in functional connectivity across sex, Open Neuroimaging J., 6, 1, 10.2174/1874440001206010001

Ciccarelli, 2006, Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis, Brain, 129, 1859, 10.1093/brain/awl100

Commission on Classification Terminology of the International League Against Epilepsy, 1989, Proposal for revised classification of epilepsies and epileptic syndromes, Epilepsia, 30, 389, 10.1111/j.1528-1157.1989.tb05316.x

Crossley, 2014, The hubs of the human connectome are generally implicated in the anatomy of brain disorders, Brain, 137, 2382, 10.1093/brain/awu132

Cuingnet, 2011, Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database, NeuroImage, 56, 766, 10.1016/j.neuroimage.2010.06.013

Daianu, 2013, Breakdown of brain connectivity between normal aging and Alzheimer's disease: a structural k-core network analysis, Brain Connect., 3, 407, 10.1089/brain.2012.0137

DeSalvo, 2014, Altered structural connectome in temporal lobe epilepsy, Radiology, 270, 842, 10.1148/radiol.13131044

Devinsky, 1999, Patients with refractory seizures, N. Engl. J. Med., 340, 1565, 10.1056/NEJM199905203402008

Engel, 2003, Practice parameter: temporal lobe and localized neocortical resections for epilepsy, Epilepsia, 44, 741, 10.1046/j.1528-1157.2003.48202.x

Engel, 2013, Connectomics and epilepsy, Curr. Opin. Neurol., 26, 186, 10.1097/WCO.0b013e32835ee5b8

Feis, 2013, Prediction of post-surgical seizure outcome in left mesial temporal lobe epilepsy, NeuroImage: Clinical, 2, 903, 10.1016/j.nicl.2013.06.010

Focke, 2011, Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls, Hum. Brain Mapp., 32, 1905, 10.1002/hbm.21161

Focke, 2012, Automated {MR} image classification in temporal lobe epilepsy, NeuroImage, 59, 356, 10.1016/j.neuroimage.2011.07.068

Griffa, 2015, Characterizing the connectome in schizophrenia with diffusion spectrum imaging, Hum. Brain Mapp., 36, 354, 10.1002/hbm.22633

Gu, 2011

Hart, 1995, The nature of epilepsy in the general population. I. Characteristics of patients receiving medication for epilepsy, Epilepsy Res., 21, 43, 10.1016/0920-1211(95)00007-W

Heiervang, 2006, Between session reproducibility and between subject variability of diffusion MR and tractography measures, NeuroImage, 33, 867, 10.1016/j.neuroimage.2006.07.037

Hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647

Hoerl, 2004

Keller, 2007, Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities, Epilepsy Res., 74, 131, 10.1016/j.eplepsyres.2007.02.005

Kloppel, 2008, Automatic classification of MR scans in Alzheimer's disease, Brain, 131, 681, 10.1093/brain/awm319

Kloppel, 2009, Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease, Neurology, 72, 426, 10.1212/01.wnl.0000341768.28646.b6

Kwan, 2004, Drug treatment of epilepsy: when does it fail and how to optimize its use?, CNS Spectr., 9, 110, 10.1017/S1092852900008476

Lanckriet, 2004, Learning the kernel matrix with semidefinite programming, J. Mach. Learn. Res., 5, 27

Le, 2011, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, 3361

Lee, 2009, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, 609

Liu, 2014, Disrupted anatomic white matter network in left mesial temporal lobe epilepsy, Epilepsia, 55, 674, 10.1111/epi.12581

Mohr, 2015, Sparse regularization techniques provide novel insights into outcome integration processes, NeuroImage, 104, 163, 10.1016/j.neuroimage.2014.10.025

Nucifora, 2007, Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity, Radiology, 245, 367, 10.1148/radiol.2452060445

Richardson, 2012, Large scale brain models of epilepsy: dynamics meets connectomics, J. Neurol. Neurochir. Psychiatr., 83, 1238, 10.1136/jnnp-2011-301944

Rubinov, 2013, Schizophrenia and abnormal brain network hubs, Dialogues Clin. Neurosci., 15, 339, 10.31887/DCNS.2013.15.3/mrubinov

Ryali, 2010, Sparse logistic regression for whole-brain classification of fMRI data, NeuroImage, 51, 752, 10.1016/j.neuroimage.2010.02.040

Ryali, 2012, Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty, NeuroImage, 59, 3852, 10.1016/j.neuroimage.2011.11.054

Sander, 1993, Some aspects of prognosis in the epilepsies: a review, Epilepsia, 34, 1007, 10.1111/j.1528-1157.1993.tb02126.x

Spencer, 2002, Neural networks in human epilepsy: evidence of and implications for treatment, Epilepsia, 43, 219, 10.1046/j.1528-1157.2002.26901.x

Sporns, 2013, The human connectome: origins and challenges, NeuroImage, 80, 53, 10.1016/j.neuroimage.2013.03.023

Taylor, 2014, Structural connectivity based whole brain modelling in epilepsy, J. Neurosci. Methods, 236, 51, 10.1016/j.jneumeth.2014.08.010

Tibshirani, 1994, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267, 10.1111/j.2517-6161.1996.tb02080.x

Wiebe, 2001, A randomized, controlled trial of surgery for temporal-lobe epilepsy, N. Engl. J. Med., 345, 311, 10.1056/NEJM200108023450501

Xia, 2013, BrainNet Viewer: a network visualization tool for human brain connectomics, PLoS One, 8, e68910, 10.1371/journal.pone.0068910

Xie, 2011, Mapping the Alzheimer's brain with connectomics, Front. Psychol., 2, 77

Zhu, 2014, Connectome-scale assessments of structural and functional connectivity in MCI, Hum. Brain Mapp., 35, 2911, 10.1002/hbm.22373

Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B (Stat Methodol.), 67, 301, 10.1111/j.1467-9868.2005.00503.x