Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aizerman, 1964, Theoretical foundations of the potential function method in pattern recognition learning, 821
Ashburner, 2001, Why voxel-based morphometry should be used, NeuroImage, 14, 1238, 10.1006/nimg.2001.0961
Avants, 2010, Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis, NeuroImage, 50, 1004, 10.1016/j.neuroimage.2010.01.041
Behrens, 2003, Characterization and propagation of uncertainty in diffusion-weighted MR imaging, Magn. Reson. Med., 50, 1077, 10.1002/mrm.10609
Behrens, 2007, Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?, NeuroImage, 34, 144, 10.1016/j.neuroimage.2006.09.018
Bien, 2013, Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009, J. Neurol. Neurochir. Psychiatr., 84, 54, 10.1136/jnnp-2011-301763
Bonilha, 2012, Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures, J. Neurol. Neurochir. Psychiatr., 83, 903, 10.1136/jnnp-2012-302476
Bonilha, 2012, Subtypes of medial temporal lobe epilepsy: influence on temporal lobectomy outcomes?, Epilepsia, 53, 1, 10.1111/j.1528-1167.2011.03298.x
Bonilha, 2013, Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy, Neurology, 81, 1704, 10.1212/01.wnl.0000435306.95271.5f
Bookstein, 2001, “Voxel-based morphometry” should not be used with imperfectly registered images, NeuroImage, 14, 1454, 10.1006/nimg.2001.0770
Bunea, 2011, Penalized least squares regression methods and applications to neuroimaging, NeuroImage, 55, 1519, 10.1016/j.neuroimage.2010.12.028
Carroll, 2009, Prediction and interpretation of distributed neural activity with sparse models, NeuroImage, 44, 112, 10.1016/j.neuroimage.2008.08.020
Casanova, 2011, High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization, Front Neuroinform, 5, 22, 10.3389/fninf.2011.00022
Casanova, 2012, Combining graph and machine learning methods to analyze differences in functional connectivity across sex, Open Neuroimaging J., 6, 1, 10.2174/1874440001206010001
Ciccarelli, 2006, Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis, Brain, 129, 1859, 10.1093/brain/awl100
Commission on Classification Terminology of the International League Against Epilepsy, 1989, Proposal for revised classification of epilepsies and epileptic syndromes, Epilepsia, 30, 389, 10.1111/j.1528-1157.1989.tb05316.x
Crossley, 2014, The hubs of the human connectome are generally implicated in the anatomy of brain disorders, Brain, 137, 2382, 10.1093/brain/awu132
Cuingnet, 2011, Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database, NeuroImage, 56, 766, 10.1016/j.neuroimage.2010.06.013
Daianu, 2013, Breakdown of brain connectivity between normal aging and Alzheimer's disease: a structural k-core network analysis, Brain Connect., 3, 407, 10.1089/brain.2012.0137
DeSalvo, 2014, Altered structural connectome in temporal lobe epilepsy, Radiology, 270, 842, 10.1148/radiol.13131044
Devinsky, 1999, Patients with refractory seizures, N. Engl. J. Med., 340, 1565, 10.1056/NEJM199905203402008
Engel, 2003, Practice parameter: temporal lobe and localized neocortical resections for epilepsy, Epilepsia, 44, 741, 10.1046/j.1528-1157.2003.48202.x
Feis, 2013, Prediction of post-surgical seizure outcome in left mesial temporal lobe epilepsy, NeuroImage: Clinical, 2, 903, 10.1016/j.nicl.2013.06.010
Focke, 2011, Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls, Hum. Brain Mapp., 32, 1905, 10.1002/hbm.21161
Focke, 2012, Automated {MR} image classification in temporal lobe epilepsy, NeuroImage, 59, 356, 10.1016/j.neuroimage.2011.07.068
Griffa, 2015, Characterizing the connectome in schizophrenia with diffusion spectrum imaging, Hum. Brain Mapp., 36, 354, 10.1002/hbm.22633
Gu, 2011
Hart, 1995, The nature of epilepsy in the general population. I. Characteristics of patients receiving medication for epilepsy, Epilepsy Res., 21, 43, 10.1016/0920-1211(95)00007-W
Heiervang, 2006, Between session reproducibility and between subject variability of diffusion MR and tractography measures, NeuroImage, 33, 867, 10.1016/j.neuroimage.2006.07.037
Hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647
Hoerl, 2004
Keller, 2007, Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities, Epilepsy Res., 74, 131, 10.1016/j.eplepsyres.2007.02.005
Kloppel, 2008, Automatic classification of MR scans in Alzheimer's disease, Brain, 131, 681, 10.1093/brain/awm319
Kloppel, 2009, Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease, Neurology, 72, 426, 10.1212/01.wnl.0000341768.28646.b6
Kwan, 2004, Drug treatment of epilepsy: when does it fail and how to optimize its use?, CNS Spectr., 9, 110, 10.1017/S1092852900008476
Lanckriet, 2004, Learning the kernel matrix with semidefinite programming, J. Mach. Learn. Res., 5, 27
Le, 2011, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, 3361
Lee, 2009, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, 609
Liu, 2014, Disrupted anatomic white matter network in left mesial temporal lobe epilepsy, Epilepsia, 55, 674, 10.1111/epi.12581
Mohr, 2015, Sparse regularization techniques provide novel insights into outcome integration processes, NeuroImage, 104, 163, 10.1016/j.neuroimage.2014.10.025
Nucifora, 2007, Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity, Radiology, 245, 367, 10.1148/radiol.2452060445
Richardson, 2012, Large scale brain models of epilepsy: dynamics meets connectomics, J. Neurol. Neurochir. Psychiatr., 83, 1238, 10.1136/jnnp-2011-301944
Rubinov, 2013, Schizophrenia and abnormal brain network hubs, Dialogues Clin. Neurosci., 15, 339, 10.31887/DCNS.2013.15.3/mrubinov
Ryali, 2010, Sparse logistic regression for whole-brain classification of fMRI data, NeuroImage, 51, 752, 10.1016/j.neuroimage.2010.02.040
Ryali, 2012, Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty, NeuroImage, 59, 3852, 10.1016/j.neuroimage.2011.11.054
Sander, 1993, Some aspects of prognosis in the epilepsies: a review, Epilepsia, 34, 1007, 10.1111/j.1528-1157.1993.tb02126.x
Spencer, 2002, Neural networks in human epilepsy: evidence of and implications for treatment, Epilepsia, 43, 219, 10.1046/j.1528-1157.2002.26901.x
Sporns, 2013, The human connectome: origins and challenges, NeuroImage, 80, 53, 10.1016/j.neuroimage.2013.03.023
Taylor, 2014, Structural connectivity based whole brain modelling in epilepsy, J. Neurosci. Methods, 236, 51, 10.1016/j.jneumeth.2014.08.010
Tibshirani, 1994, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267, 10.1111/j.2517-6161.1996.tb02080.x
Wiebe, 2001, A randomized, controlled trial of surgery for temporal-lobe epilepsy, N. Engl. J. Med., 345, 311, 10.1056/NEJM200108023450501
Xia, 2013, BrainNet Viewer: a network visualization tool for human brain connectomics, PLoS One, 8, e68910, 10.1371/journal.pone.0068910
Xie, 2011, Mapping the Alzheimer's brain with connectomics, Front. Psychol., 2, 77
Zhu, 2014, Connectome-scale assessments of structural and functional connectivity in MCI, Hum. Brain Mapp., 35, 2911, 10.1002/hbm.22373