Evaluation of low and high level integration options for carbon capture at an integrated iron and steel mill

International Journal of Greenhouse Gas Control - Tập 77 - Trang 27-36 - 2018
Maria Sundqvist1, Maximilian Biermann2, Fredrik Normann2, Mikael Larsson1, Leif Nilsson3
1Swerea MEFOS AB, Box 812, SE-971 25 Luleå, Sweden
2Chalmers University of Technology, SE-412 96 Göteborg, Sweden
3SSAB Europe, SE-971 88 Luleå, Sweden

Tài liệu tham khảo

Arasto, 2013, Post-combustion capture of CO2 at an integrated steel mill—part I: technical concept analysis, Int. J. Greenh. Gas Control, 16, 271, 10.1016/j.ijggc.2012.08.018 Bains, 2017, CO2 capture from the industry sector, Prog. Energy Combust. Sci., 63, 146, 10.1016/j.pecs.2017.07.001 Barati, 2011, Energy recovery from high temperature slags, Energy, 36, 5440, 10.1016/j.energy.2011.07.007 Commission, 2001 Cormos, 2016, Evaluation of reactive absorption and adsorption systems for post-combustion CO2 capture applied to iron and steel industry, Appl. Therm. Eng., 105, 56, 10.1016/j.applthermaleng.2016.05.149 Farla, 1995, Carbon dioxide recovery from industrial processes, Energy Convers. Manag., 36, 827, 10.1016/0196-8904(95)00131-V Garđarsdóttir, 2015, Postcombustion CO2 capture using monoethanolamine and ammonia solvents: the influence of CO2 concentration on technical performance, Ind. Eng. Chem. Res., 54, 681, 10.1021/ie503852m Garđarsdóttir, 2017, Effects of CO2-absorption control strategies on the dynamic performance of a supercritical pulverized-coal-fired power plant, Ind. Eng. Chem. Res., 56, 4415, 10.1021/acs.iecr.6b04928 Gielen, 2003, CO2 removal in the iron and steel industry, Energy Convers. Manag., 44, 1027, 10.1016/S0196-8904(02)00111-5 Ho, 2013, Comparison of CO2 capture economics for iron and steel mills, Int. J. Greenh. Gas Control, 19, 145, 10.1016/j.ijggc.2013.08.003 Hooey, 2010, Design and application of a spreadsheet-based model of the blast furnace factory, ISIJ Int., 50, 924, 10.2355/isijinternational.50.924 IEAGHG, 2013 Leung, 2014, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev., 39, 426, 10.1016/j.rser.2014.07.093 McBrien, 2016, Potential for energy savings by heat recovery in an integrated steel supply chain, Appl. Therm. Eng., 103, 592, 10.1016/j.applthermaleng.2016.04.099 Meijer, 2009, ULCOS: ultra-low CO2 steelmaking, Ironmak. Steelmak., 36, 249, 10.1179/174328109X439298 Normann, 2017, Partial capture of carbon dioxide from industrial sources - a discussion on cost optimization and the CO2 capture rate, Energy Procedia, 114, 113, 10.1016/j.egypro.2017.03.1154 Øi, 2017, Simulation and economic optimization of vapour recompression configuration for partial CO2 capture, 298 Tsupari, 2013, Post-combustion capture of CO2 at an integrated steel mill—part II: economic feasibility, Int. J. Greenh. Gas Control, 16, 278, 10.1016/j.ijggc.2012.08.017 World Steel Association, 2015