Đánh giá vi sinh vật tảo vi mạch bản địa Chlorella sp. FC2 IITG như một nhà máy tế bào cho sản xuất biodiesel và mở rộng quy mô trong điều kiện ngoài trời

Oxford University Press (OUP) - Tập 41 - Trang 499-511 - 2014
Muthusivaramapandian Muthuraj1, Vikram Kumar2, Basavaraj Palabhanvi1, Debasish Das1
1Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India
2Centre for Energy, Indian Institute of Technology, Guwahati, India

Tóm tắt

Nghiên cứu hiện tại báo cáo đánh giá một dòng tảo vi mạch bản địa, Chlorella sp. FC2 IITG, như một ứng cử viên tiềm năng cho sản xuất biodiesel. Việc phân tích đặc điểm của chủng đã được thực hiện dưới các điều kiện nuôi cấy quang tự dưỡng, dị dưỡng và hỗn hợp dưỡng. Thêm vào đó, việc nuôi cấy dòng tảo trong ao mở dưới điều kiện ngoài trời đã được thực hiện để đánh giá hiệu suất tăng trưởng và năng suất lipid dưới các thông số môi trường thay đổi và sự hiện diện của các chất ô nhiễm tiềm năng. Các phát hiện chính bao gồm: (1) sự khác biệt trong điều kiện nuôi cấy dẫn đến sự biến động đáng kể về năng suất sinh khối (73–114 mg l−1 ngày−1) và năng suất lipid tổng (35,02–50,42 mg l−1 ngày−1) của dòng tảo; (2) sự thiếu hụt nitrat và photphat được xác định là yếu tố kích thích sự tích tụ lipid trong tế bào; (3) việc nuôi cấy ao mở của chủng trong điều kiện ngoài trời đã dẫn đến năng suất sinh khối đạt 44 mg l−1 ngày−1 và năng suất lipid tổng đạt 10,7 mg l−1 ngày−1; (4) mức độ ô nhiễm vi khuẩn tối đa phát hiện được là 7% tổng số tế bào trong hệ thống ao mở; và (5) phân tích axit béo tiết lộ sự phong phú của axit palmitic (C16:0), axit oleic (C18:1) và axit linoleic (C18:2), những yếu tố được coi là thiết yếu cho chất lượng biodiesel phù hợp.

Từ khóa

#Chlorella sp. #biodiesel #tảo vi mạch #nuôi cấy ao mở #lipid #ô nhiễm vi khuẩn

Tài liệu tham khảo

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410 Arumugam M, Agarwal A, Arya MC, Ahmed Z (2013) Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour Technol 131:246–249 Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry and biotechnology. CRC Press, Boca Raton Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissues by nitration of salicylic acid. Comm Soil Sci Plant Anal 6:71–80 Cha TS, Chen JW, Goh EG, Aziz A, Loh SH (2011) Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgal oils for biodiesel application. Bioresour Technol 102:10633–10640 Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516 Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81 Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306 Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effects of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris. Chem Eng Process 48:1146–1151 de Bashan LE, Trejo A, Huss VA, Hernandez JP, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99:4980–4989 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 Fan J, Huang J, Li Y, Han F, Wang J, Li X (2012) Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresour Technol 112:206–211 Feng P, Deng Z, Fan L, Hu Z (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng 114(4):405–410 Graham JM, Graham LE, Zulkifly SB, Pfleger BF, Hoover SW, Yoshitani J (2012) Freshwater diatoms as a source of lipids for biofuels. J Ind Microbiol Biotechnol 39:419–428 Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253 Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639 Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635 Isleten-Hosoglu M, Gultepe I, Elibol M (2012) Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochem Eng J 61:11–19 Kessler E, Huss VAR (1992) Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. J Phycol 28:550–553 Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the freshwater eustigmatophyte Monodus subterraneus. Phytochemistry 67(7):696–701 Li Y, Fei X, Deng X (2012) Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenergy 42:199–211 Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102(1):123–129 Li YQ, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green algae Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636 Lim DKY, Garg S, Timmins M, Zhang ESB, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS One 7(7). doi:10.1371/journal.pone.0040751 Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291 Mandal S, Mallick N (2012) Biodiesel production by the green microalga Scenedesmus obliquus in a recirculatory aquaculture system. Appl Environ Microbiol 78(16):5929–5934 Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232 Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T (2010) Marine diatom, Navicula sp. strain JPCC DA and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotechnol 161:483–490 Miller GL (1959) Use of di-nitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 Muthuraj M, Palabhanvi B, Misra S, Kumar V, Sivalingavasu K, Das D (2013) Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Photosynth Res 118:167–179 Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42 Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis, 1st edn. Pergamon Press Ltd, Great Britain Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenergy 37:60–66 Pruvost J, Vooren GV, Gouic BL, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158 Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112 Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti GM (2012) Excess of CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour Technol 104:523–529 Shen Y, Yuan W, Pei Z, Mao E (2009) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684 Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292 Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844 Wan M, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109:1958–1964 Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507 Yeh KL, Chang JS (2012) Effects of cultivation conditions and media compositions on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105:120–127