Đánh giá polymer in dấu ion phân tử dựa trên dithiadiamide (MIIP) để thu hồi chọn lọc platinum từ dung dịch bộ chuyển đổi xúc tác ô tô (ACC) đã được axit phân hủy

Springer Science and Business Media LLC - Tập 12 - Trang 175-182 - 2022
Lawrence A. Limjuco1,2,3, Francis Kirby Burnea4,3
1Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines Diliman, Quezon City, Philippines
2College of Engineering, University of Southeastern Philippines, Davao City, Philippines
3National Research Council of the Philippines (NRCP), Taguig City, Philippines
4Department of Chemistry, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City, Philippines

Tóm tắt

Platinum, là một nguyên liệu thô quan trọng, cần được thu hồi từ các nguồn thứ cấp. Trong bài báo này, các chất hấp phụ chọn lọc Pt2+ đã được tổng hợp từ các ligand dithiadiamide có khả năng polymer hóa thông qua phản ứng ngưng tụ giữa mercaptoacetamide và ω-dibromoalkan với các chiều dài alkan khác nhau. Các polymer in dấu ion phân tử (MIIP) đã được chuẩn bị bằng cách phức hợp và eluate mẫu Pt2+ trong copolymer dithiadiamide ligand—ethylene glycol dimethacrylate. MIIPs đã được đánh giá một cách hệ thống về khả năng thu hồi chọn lọc Pt2+ thông qua isotherm hấp phụ, động học và khả năng tái sử dụng. Các thử nghiệm chọn lọc được thực hiện bằng cách sử dụng một dung dịch mô phỏng chứa các cation chiếm ưu thế có mặt trong dung dịch bộ chuyển đổi xúc tác đã qua sử dụng sau khi khử axit 3 chiều và một dung dịch nhị phân Pt2+/Pd2+. Dữ liệu được xác nhận bằng tính toán lý thuyết chức năng mật độ.

Từ khóa

#platinum #thu hồi chọn lọc #polymer in dấu ion phân tử #dithiadiamide #bộ chuyển đổi xúc tác ô tô

Tài liệu tham khảo

European Commission, Enterprise and Industry, Report on critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials. https://ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf. Accessed 18 Aug 2021 A.J. Hunt, T.J. Farmer, J.H. Clark, Element Recovery and Sustainability (RSC, Cambridge, 2013), pp. 1–28 P.J. Loferski, U.S. Geological Survey, Mineral Commodity Summaries, Platinum-Group Metals (2018). https://minerals.usgs.gov/minerals/pubs/commodity/platinum/mcs-2018-plati.pdf. Accessed 19 Feb 2021 D. Jimenez de Aberasturi, R. Pinedo, I. Ruiz de Larramendi, J.I. Ruiz de Larramendi, T. Rojo, Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Miner. Eng. 24, 505 (2011) S. Karim, Y.P. Ting, Recycling pathways for platinum group metals from spent automotive catalyst: a review on conventional approaches and bio-processes. Resour. Conserv. Recycl. 170, 105588 (2021) I. Yakoumis, M. Panou, A.M. Moschovi, D. Panias, Recovery of platinum group metals from spent automotive catalysts: a review. Clean. Eng. Technol. 3, 100112 (2021) H.V. Ehrlich, T.M. Buslaeva, T.A. Maryutina, Trends in sorption recovery of platinum metals: a critical survey. Russ. J. Inorg. Chem. 62, 1797 (2017) S.Y. Wang, T. Vincent, J.C. Roux, C. Faur, E. Guibal, Pd(II) and Pt(IV) sorption using alginate and algal-based beads. Chem. Eng. J. 313, 567 (2017) T. Maruyama, Y. Terashima, S. Takeda, F. Okazaki, M. Goto, Selective adsorption and recovery of precious metal ions using protein-rich biomass as efficient adsorbents. Process Biochem. 49, 850 (2014) M. Gurung, B.B. Adhikari, X. Gao, S. Alam, K. Inoue, Sustainability in the metallurgical industry: chemically modified cellulose for selective biosorption of gold from mixtures of base metals in chloride media. Ind. Eng. Chem. Res. 53, 8565 (2014) R.M. Izatt, S.R. Izatt, N.E. Izatt, K.E. Krakowiak, R.L. Bruening, L. Navarro, Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chem. 17, 2236 (2015) T.K. Biswas, M.M. Yusoff, S.S. Sarjadi, S.E. Arshad, B. Musta, M.L. Rahman, Ion-imprinted polymer for selective separation of cobalt, cadmium and lead ions from aqueous media. Sep. Sci. Technol. 56, 671 (2021) Z. Zhou, Y. Hu, Z. Wang, H. Zhang, B. Zhang, Z. Ren, Facile preparation of a rubidium ion-imprinted polymer by bulk polymerization for highly efficient separation of rubidium ions from aqueous solution. New J. Chem. 45, 9582 (2021) B. Leśniewska, M. Kosińska, B. Godlewska-Żyłkiewicz, E. Zambrzycka, A.Z. Wilczewska, Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples. Microchim. Acta 175, 273 (2011) J. Dobrzynska, M. Dąbrowska, R. Olchowski, E. Zięba, R. Dobrowolski, Development of a method for removal of platinum from hospital wastewater by novel ion-imprinted mesoporous organosilica. J. Environ. Chem. Eng. 9, 105302 (2021) B.S.B. Gxoyiya, J.P. Hagemann, P.T. Kaye, Designer ligands. Part 12. Synthesis and evaluation of novel palladium(II)–selective ligand systems. J. Chem. Res. 4, 252 (2004) B.S.B. Gxoyiya, Synthesis and evaluation of PGM-selective ligands. MSc thesis, Grahamstown, Rhodes University, 2003. R. Rostamian, M. Najafi, A.A. Rafati, Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: kinetics, isotherms and error analysis. Chem. Eng. J. 171, 1004 (2011) C.T. Lee, W.T. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988) Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, et. al: (Gaussian, Inc., Wallingford, CT, 2009). R.G. Pearson, Hard and soft acid and bases. J. Am. Chem. Soc. 85, 3533 (1963) K. Nakamoto, P.J. McCarthy, Spectroscopy and Structure of Metal Chelate Compounds (Wiley, New York, 1968) M. Kruk, M. Jaronlec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169 (2001) P. Chassary, T. Vincent, J. SanchezMarcano, L.E. Macaskie, E. Guibal, Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76, 131 (2005) I. Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software (2013). http://www.kemi.kth.se/medusa/ Q.Q. Gong, X.Y. Guo, S. Liang, C. Wang, Q.H. Tian, Study on the adsorption behavior of modified persimmon powder biosorbent on Pt(IV). Int. J. Environ. Sci. Technol. 13, 47 (2016) D.J. Garole, B.C. Choudhary, D. Paul, A.U. Borse, Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ. Sci. Pollut. Res. 25, 10911 (2018) L. Zhou, J. Xu, X. Liang, Z. Liu, Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 182, 518 (2010) G.G. Talanova, K.B. Yatsimirskii, O.V. Kravchenko, Peculiarities of K2PdCl4 and K2PtCl4 complexation with polymer-supported Dibenzo-18-crown-6. Ind. Eng. Chem. Res. 39, 3611 (2000) L.M. Zhou, J.H. Liu, Z.R. Liu, Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J. Hazard. Mater. 172, 439 (2009) D.M. Roundhill, in Comprehensive Coordination Chemistry, ed. By G. Wilkinson, R.D. Gillard and J.A. McClevery, vol 5 (Pergamon, Oxford, 1987), pp. 351–531