Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá các kỹ thuật xử lý nước thải khác nhau tại ba nhà máy xử lý nước thải ở Istanbul nhằm loại bỏ các hợp chất gây rối loạn nội tiết chọn lọc trong pha lỏng
Tóm tắt
Các hợp chất gây rối loạn nội tiết (EDC) là những chất ngoại sinh gây ra các tác động xấu đến sức khoẻ trong một sinh vật còn nguyên vẹn, hoặc thế hệ của nó, do các thay đổi trong chức năng nội tiết. Các nghiên cứu gần đây đã chỉ ra rằng nước thải từ các nhà máy xử lý nước thải đóng vai trò quan trọng trong việc phát tán EDC vào môi trường thủy sinh. Do đó, trong nghiên cứu này, các mẫu nước vào và nước ra từ ba nhà máy xử lý nước thải (WWTP) khác nhau ở Istanbul đã được phân tích để xác định sự hiện diện của các EDC chính. Các hóa chất này bao gồm steroid và các hóa chất hữu cơ tổng hợp. Do đó, sự xuất hiện và số phận của các EDC có ảnh hưởng lớn đến sức khỏe đã được theo dõi tại ba WWTP ở Istanbul. Hơn nữa, các WWTP này đang áp dụng các quy trình xử lý khác nhau. Do đó, hiệu suất loại bỏ EDC của các chế độ xử lý khác nhau cũng được đánh giá. Phytosterol là EDC phong phú nhất trong các mẫu nước vào. Nhóm hợp chất thứ hai với nồng độ cao trong nước vào là phenol mạch nhánh. Mức độ pesticide của tất cả ba mẫu nước vào từ WWTP đều thấp. Nhà máy xử lý nước thải Pasakoy Advanced hiệu quả hơn trong việc loại bỏ EDC. Nhà máy xử lý nước thải Kadikoy Primary thể hiện hiệu quả loại bỏ EDC thấp nhất. Theo những gì chúng tôi biết, công trình này là báo cáo chi tiết đầu tiên về sự xuất hiện và hành vi của cả EDC tự nhiên và tổng hợp tại các WWTP ở Istanbul và Thổ Nhĩ Kỳ. Mức steroid estrogen trong nghiên cứu này cao hơn so với các giá trị đã được ghi nhận trước đó, ngoại trừ các mức được đưa ra cho nhà máy xử lý nước thải Gaobeidian ở Bắc Kinh, Trung Quốc. Điều này được cho là do mật độ dân số cao hơn ở Bắc Kinh và Istanbul cũng như tỷ lệ tiêu thụ nước cá nhân thấp hơn ở hai thành phố này.
Từ khóa
#hợp chất gây rối loạn nội tiết #nhà máy xử lý nước thải #steroid #hợp chất hữu cơ tổng hợp #IstanbulTài liệu tham khảo
Ahel, M., Giger, W., & Koch, M. (1994). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—I. Occurrence and transformation in sewage treatment. Water Research, 28(5), 1131–1142.
Ahmad, N., Bugueno, G., Guo, L., & Marolt, R. (1999). Determination of organochlorine and organophospate pesticide residues in fruits, vegetables and sediment. Journal of Environmental Science Health, 34, 829–848.
Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., Adams, C. D., & Surampalli, R. Y. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochemistry, 41, 525–539.
Ballesteros-Gomez, A., Ruiz, F. J., Rubio, S., & Perez-Bendito, D. (2007). Determination of bisphenols A and F and their diglycidyl ethers in wastewater and river water by coacervative extraction and liquid chromatography–fluorimetry. Analytica Chimica Acta, 603, 51–59.
Baronti, C., Curini, R., D'Ascenzo, G., DiCorcia, A., Gentili, A., & Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science and Technology, 34, 5059–5066.
Birkett, J. W., Lester J. N., (2003). Endocrine disrupters in wastewater and sludge treatment processes. Boca Raton, FL: CRC Press
Cargouet, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S., & Levi, Y. (2004). Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment, 324(1–3), 55–66.
Christianson-Heiska, I., Smeds, P., Granholm, N., Bergelin, E., & Isomaa, B. (2007). Endocrine modulating actions of a phytosterol mixture and its oxidation products in zebrafish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 58, 429–436.
Claraa, M., Strenna, B., Gansb, O., Martinez, E., Kreuzingera, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39, 4797–4807.
Cooper, D. A., Webb, D. R., & Peters, J. C. (1997). Evaluation of the potential for olestra to affect the availability of dietary phytochemicals. Journal of Nutrition, 127, 1699S–1709S.
Daglioglu, N., Gulmen, M. K., Akcan, R., Efeoglu, P., Yener, F., & Ünal, İ. (2010). Determination of organochlorine pesticides residues in human adipose tissue, data from Cukurova, Turkey. Bulletin of Environmental Contamination and Toxicology, 85, 97–102.
Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. I. Chemical fractionation and in vitro biological screening. Environmental Science and Technology, 32(17), 2498–2506.
EC (1996). European Workshop on the Impact of Endocrine Disrupters on Human Health and Wildlife. Report of Proceedings EUR 17549, Weybridge, United Kingdom, 2–4 December.
EU (2007). Commission of the European Communities, Commission Staff Working Document on the Implementation of the “Community Strategy For Endocrine Disrupters”—a range of substances suspected of interfering with the hormone systems of humans and wildlife (Com (1999) 706), (Com (2001) 262) and (Sec (2004) 1372), Brussels.
FDA (1999). Food and Drug Administration Total Diet Study; summary of residues found ordered by pesticide, market baskets 91-3-97-1. U.S. Food and Drug Administration. http://vm.cfsan.fda.gov/̴acrobat/TDS1byps.pdf. Accessed 4 May 2012.
Fernandez, M. P., Ikonomou, M. G., & Buchanan, I. (2007). An assessment of estrogenic organic contaminant in Canadian wastewaters. Science of the Total Environment, 373, 250–269.
Han, J., Qiu, W., Hu, J., & Gao, W. (2012). Chemisorption of estrone in nylon microfiltration membranes: adsorption mechanism and potential use for estrone removal from water. Water Research, 46(3), 873–881.
Hansch, C., Hoekman, D., Leo, A., Zhang, L., & Li, P. (1995). The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicology Letters, 79(1–3), 45–53.
Howard, P. H. (1989). Handbook of environmental fate and exposure data (Vol. 1). Chelsea: Lewis Publishers.
Isobe, T., Nishiyama, H., Nakashima, A., & Takada, H. (2001). Distribution and behaviour of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo Metropolitan Area: their association with aquatic particles and sedimentary distributions. Environmental Science and Technology, 35, 1041–1049.
Janesick, A., & Blumberg, B. (2011). Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Research. Part C, Embryo Today, 93(1), 34–50.
Johnson, A. C., Belfroid, A., & Di Corcia, A. (2000). Estimating steroid estrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 256(2), 163–173.
Johnson, A. C., Aerni, H. R., Gerritsen, A., Gibert, M., Giger, W., Hylland, K., et al. (2005). Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Research, 39(1), 47–58.
Joss, A., Andersen, H., Ternes, T., Richle, P. R., & Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environmental Science and Technology, 38, 3047–3055.
Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The Removal of pharmaceuticals, personal care products, endrocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43, 363–380.
Kelce, W. R., Stone, C. R., Laws, S. C., Gray, I. A., Kemppainen, J. A., & Wilson, E. M. (1995). Persistent DDT metabolite p, p′-DDE is a potent androgen receptor antagonist. Nature, 375, 581–585.
Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the pictogram per liter range. Environmental Science and Technology, 35, 3201–3206.
Lara-Martín, P. A., González-Mazo, E., & Brownawell, B. J. (2012). Environmental analysis of alcohol ethoxylates and nonylphenol ethoxylate metabolites by ultra-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 402(7), 2359–2368.
Laskowski, D. A. (2002). Physical and chemical properties of pyrethroids. Reviews of Environmental Contamination and Toxicology, 174, 49–170.
Lee, H. B., & Peart, T. E. (1995). Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants. Analytical Chemistry, 67, 1976–1980.
Lee, M. H., Eugene, K., & Tae, S. K. (2004). Exposure to 4-tert-octylphenol, an environmentally persistent alkylphenol, enhances interleukin-4 production in T cells via NF-AT activation. Toxicology and Applied Pharmacology, 197, 19–28.
Lee, H. B., Peart, T. E., & Lewina, S. M. (2005). Determination of endocrine disrupting phenols, acidic pharmaceuticals and personal care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. Journal Chromatography Abstracts, 1094, 122–129.
Lee, J., Lee, B. C., Ra, J. S., Cho, J., Kim, I. S., Chang, N. I., et al. (2008). Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes. Chemosphere, 71(8), 1582–1592.
Lertkiatmongkol, P., Jenwitheesuk, E., & Rongnoparut, P. (2011). Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into differences in substrate selectivity. BMC Research Notes, 4, 321–327.
Maguire, R. J. (1999). Review of persistence of nonylphenol and nonylphenol ethoxylates. Water Quality Research Journal of Canada, 34(1), 37–78.
Markman, S., Müller, C. T., Pascoe, D., Dawson, A., & Buchanan, K. L. (2011). Pollutants affect development in nestling starlings Sturnus vulgaris. Journal of Applied Ecology, 48, 391–397.
Martino, M. A., Nevadunsky, N. S., Magliaro, T. J., & Goldberg, M. I. (2002). The DES (diethylstilbestrol) years: bridging the past into the future. Primary Care Update for OB/GYNS, 9(1), 7–12.
Mastrup, M., Jensen, R.L, Schafer, A. I., Khan, S., (2001). Fate modeling—an important tool water recycling technologies. In: Schafer, A.I., Sherman, P., Waite, T.D. (eds.) Recent advances in water recycling technologies (pp. 103–112). Australia, Brisbane.
Mauricio, R., Diniz, M., Petrovic, M., Amaral, L., Peres, I., Barcelo, D., et al. (2006). A characterization of selected endocrine disruptor compounds in a Portuguese wastewater treatment plant. Environmental Monitoring and Assessment, 118, 75–87.
Miyagawa, S., Sato, M., & Iguchi, T. (2011). Molecular mechanisms of induction of persistent changes by estrogenic chemicals on female reproductive tracts and external genitalia. Journal of Steroid Biochemistry and Molecular Biology, 127, 51–57.
Nakada, N., Yasojima, M., Okayasu, Y., Komori, K., Tanaka, H., & Suzuki, Y. (2006). Fate of oestrogenic compounds and identification of oestrogenicity in a wastewater treatment process. Water Science and Technology, 53(11), 51–63.
Nakari, T., & Erkomaa, K. (2003). Effects of phtosterols on zebrafish reproduction in multigeneration test. Environmental Pollution, 60, 275–279.
Palace, V., Evans, R., Wautier, K., Vandenbyllardt, L., Vandersteen, W., & Kidd, K. (2002). Induction of vitellogenin and histological effects in wild fathead minnows from a lake experimentally treated with the synthetic estrogen, ethynylestradiol. Water Quality Research Journal of Canada, 37, 637–650.
Petrovic, M., Sole, M., Lopez de Alda, M. J., & Barcelo, D. (2002). Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects on Feral Carp. Environmental Toxicology and Chemistry, 21, 2146–2156.
Purdom, C. E., Hardiman, P. A., Bye, V. J., Eno, N. C., Tyler, C. R., & Sumpter, J. P. (1994). Estrogenic effects of effluents from sewage treatment works. Chemistry and Ecology, 8, 275–285.
Rodgers-Gray, T. P., Jobling, S., Morris, S., Kelly, C., Kirby, S., Janbakhsh, A., et al. (2000). Long-term temporal changes in the estrogenic composition of treated sewage effluent and its biological effects on fish. Environmental Science and Technology, 34(8), 1521–1528.
Rogers, H. R. (1996). Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. The Science of the Total Environment, 185(1–3), 3–26.
Schmitt, C. J., Zajicek, J. L., May, T. W., & Cowman, D. F. (1999). Organochlorine residues and elemental contaminants in U.S. freshwater fish, 1976–1986: National Contaminant Biomonitorin Program. Reviews of Environmental Contamination and Toxicology, 162, 43–104.
Shugart, L. R., (2011). Emerging Topics in Ecotoxicology, Principles, Approaches and Perspectives, Series Ed.;ISSN: 1868–1344, Chapter 13, pg 394, Springer Science & Business Media, LLC.
Snyder, S. A., Keith, T. L., Verbrugge, D. A., Snyder, E. M., Gross, T. S., Kannan, K., et al. (1999). Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environmental Science and Technology, 33, 2814.
Sole′, M., Alda, L. M. J., Castillo, M., Porte, C., Ladegaard-Pedersen, K., & Barcelo, D. (2000). Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian Area (NE Spain). Environmental Science and Technology, 34, 5076–5083.
Tan, B. L. L., Hawker, D. W., Muller, J. F., Leusch, F. D. L., Tremblay, L. A., & Chapman, H. F. (2007). Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environment International, 33, 654–669.
Thorpe, K. L., Gross-Sorokin, M., Johnson, I., Brighty, G., & Tyler, C. R. (2006). An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents. Environmental Health Perspectives, 114, 90–97.
Titus-Ernstoff, L., Hatch, E. E., Hoover, R. N., Palmer, J. R., & Greenberg, E. R. (2001). Long-term cancer risk in women given diethylstilbestrol (DES) during pregnancy. British Journal of Cancer, 84, 125–133.
Vethaak, A. D., Lahr, J., Schrap, S. M., Belfroid, A. C., Rijs, G. B. J., Gerritsen, A., et al. (2005). An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere, 59, 511–524.
Wetherill, Y. B., Petra, C. E., Monk, K. R., Puga, A., & Knudsen, K. E. (2002). The xenoestrogen BPA induces inappropriate androgen receptor activation and mitogenesis in prostate adenocarcinoma cells. Molecular Cancer Therapeutics, 7, 515–524.
Zafra-Gómez, A., Ballesteros, O., Navalón, A., & Vílchez, J. L. (2008). Determination of some endocrine disrupter chemicals in urban wastewater samples using liquid chromatography–mass spectrometry. Microchemical Journal, 88(1), 87–94.
Zhou, Y., Zha, J., & Wang, Z. (2011). Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing. China Environmental Monitoring Assessment, 184(11), 6799–6813.