Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging

Springer Science and Business Media LLC - Tập 11 Số 1 - Trang 27-41 - 2010
V. Alchanatis1, Yafit Cohen1, Shabtai Cohen2, Matthias Möller2, Michael Sprinstin3, M. Meron4, J. Tsipris4, Yehoshua Saranga5, E. Sela5,1
1Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan, Israel
2Institute of Soil, Water and Environmental Sciences, ARO, The Volcani Center, Bet Dagan, Israel
3The J. Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
4Galilee Technology Center, Migal, Rosh Pinna, Israel
5Faculty of Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Clarke, T. R. (1997). An empirical approach for detecting crop water stress using multispectral airborne sensors. Horttechnology, 7, 9–16.

Clawson, K. L., Jackson, R. D., & Pinter, P. J. (1989). Evaluating plant water stress with canopy temperature differences. Agronomy Journal, 81, 858–863.

Cohen, Y., Alchanatis, V., Meron, M., Saranga, S., & Tsipris, J. (2005). Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany, 56, 1843–1852. doi: 10.1093/jxb/eri174 .

Colaizzi, P. D., Barnes, E. M., Clarke, T. R., Choi, C. Y., & Waller, P. M. (2003). Estimating soil moisture under low-frequency surface irrigation using the CWSI. Journal of Irrigation and Drainage Engineering, 129, 27–35. doi: 10.1061/(ASCE)0733-9437(2003)129:1(27) .

Cornish, K., Radin, J. W., Turcotte, E. L., Lu, Z., & Zeiger, E. (1991). Enhanced photosynthesis and stomatal conductance of pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiology, 97, 484–489. doi: 10.1104/pp.97.2.484 .

Ehrler, W. L., Idso, S. B., Jackson, R. D., & Reginato, R. J. (1978). Wheat canopy temperature relation to plant water potential. Agronomy Journal, 70, 251–256.

Evans, D. E., Sadler, E. J., Camp, C. R., Millen, J. A. (2000). Spatial canopy temperature measurements using central pivot mounted IRTs. In P. C. Robert, R. M. Rust, & W. E. Larsen (Eds.), Proceedings of the 5th international conference on precision agriculture. ASA, CSSA, SSSA, Madison, WI., CDROM. Accessed February 15, 2009, from http://www.ars.usda.gov/SP2UserFiles/Place/66570000/Manuscripts/2000/Man580.pdf .

Gates, D. M. (1964). Leaf temperature and transpiration. Agronomy Journal, 56, 273–277.

Girona, J., Mata, M., del Campo, J., Arbonés, A., Bartra, E., & Marsall, J. (2005). The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 24, 115–127. doi: 10.1007/s00271-005-0015-7 .

Gonzalez-Dugo, M. P., Moran, M. S., Mateos, L., & Bryant, R. (2006). Canopy temperature variability as an indicator of crop water stress severity. Irrigation Science, 24, 233–240. doi: 10.1007/s00271-005-0022-8 .

Grimes, D. W., & Yamada, H. (1982). Relation of cotton growth and yield to minimum leaf water potential. Crop Science, 22, 134–139.

Idso, S. B., Jackson, R. D., Pinter, P. J., Jr., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55. doi: 10.1016/0002-1571(81)90032-7 .

Irmak, S., Haman, D. Z., & Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92, 1221–1227.

Jackson, R. D. (1982). Canopy temperature and crop water stress. In D. I. Hillel (Ed.), Advances in irrigation (Vol. 1, pp. 43–85). New York: Academic Press.

Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138. doi: 10.1029/WR017i004p01133 .

Jackson, R. D., Kustas, W. P., & Choudhury, B. J. (1988). A reexamination of the crop water stress index. Irrigation Science, 9, 309–317. doi: 10.1007/BF00296705 .

Jones, H. G. (1992). Plants and microclimate (2nd ed., pp. 231–236). Cambridge, UK: Cambridge University Press.

Jones, H. G. (1999a). Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell and Environment, 22, 1043–1055. doi: 10.1046/j.1365-3040.1999.00468.x .

Jones, H. G. (1999b). Use of infrared thermometry for estimation of stomatal conductance as possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95, 139–149. doi: 10.1016/S0168-1923(99)00030-1 .

Jones, H. G., Stoll, M., Santos, T., de Saousa, C., Chaves, M. M., & Grant, O. (2002). Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. Journal of Experimental Botany, 53, 2249–2260. doi: 10.1093/jxb/erf083 .

Meron, M., Grimes, D. W., Phene, C. J., & Davis, K. R. (1987). Pressure chamber procedures for leaf water potential measurements of cotton. Irrigation Science, 8, 215–222. doi: 10.1007/BF00259382 .

Meron, M., Tsipris, J., & Charitt, D. (2003). Remote mapping of crop water status to assess spatial variability of crop stress. In J. V. Stafford & A. Werner (Eds.), Precision agriculture ‘03: Proceedings of the 4th European conference on precision agriculture (pp. 405–410). Wageningen, The Netherlands: Wageningen Academic Publishers.

Möller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., et al. (2007). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58, 827–838. doi: 10.1093/jxb/erl115 .

Naor, A., Klein, I., & Doron, V. (1995). Stem water potential and apple fruit size. Journal of the American Society for Horticultural Science, 120, 577–582.

Stern, R., Meron, M., Naor, A., Gazit, S., Bravdo, B., & Wallach, R. (1998). Effect of autumnal irrigation level in ‘Mauritius’ lychee on soil and plant water status and following year flowering intensity and yield. Journal of the American Society for Horticultural Science, 123, 150–155.