Evaluation of daily online contour adaptation by radiation therapists for prostate cancer treatment on an MRI-guided linear accelerator
Tóm tắt
Background and purpose Magnetic resonance (MR)-guided linear accelerator (MR-Linac) systems have changed radiotherapy workflows. The addition of daily online contour adaptation allows for higher precision treatment, but also increases the workload of those involved. We train radiation therapists (RTTs) to perform daily online contour adaptation for MR-Linac treatment of prostate cancer (PCa) patients. The purpose of this study was to evaluate these prostate contours by performing an interfraction and interobserver analysis. Materials and methods Clinical target volume (CTV) contours generated online by RTTs from 30 low-intermediate risk PCa patients, treated with 5x7.25 Gy, were used. Two physicians (Observers) judged the RTTs contours and performed adaptations when necessary. Interfraction relative volume differences between the first and the subsequent fractions were calculated for the RTTs, Observer 1, and Observer 2. Additionally, interobserver dice’s similarity coefficient (DSC) for fraction 2–5 was calculated with the RTTs- and physician-adapted contours. Clinical acceptability of the RTTs contours was judged by a third observer. Results Mean (SD) online contour adaptation time was 12.6 (±3.8) minutes and overall median (interquartile range [IQR]) relative volume difference was 9.3% (4.4–13.0). Adaptations by the observers were mostly performed at the apex and base of the prostate. Median (IQR) interobserver DSC between RTTs and Observer 1, RTTs and Observer 2, and Observer 1 and 2 was 0.99 (0.98–1.00), 1.00 (0.98–1.00), and 1.00 (0.99–1.00), respectively. Contours were acceptable for clinical use in 113 (94.2%) fractions. Dose-volume histogram (DVH) analysis showed significant CTV underdosage for one of the seven identified outliers. Conclusion Daily online contour adaptation by RTTs is clinically feasible for MR-Linac treatment of PCa.
Từ khóa
#Prostate cancer #MR-Linac #MRI-guided radiotherapy #Online contour adaptation #Adapt-to-shape #Radiation therapistsTài liệu tham khảo
[1] B.W. Raaymakers I.M. Jurgenliemk-Schulz G.H. Bol M. Glitzner A.N.T.J. Kotte B. van Asselen First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment Phys Med Biol 62 2017 L41 L50 10.1088/1361-6560/aa9517 Raaymakers BW, Jurgenliemk-Schulz IM, Bol GH, Glitzner M, Kotte ANTJ, van Asselen B, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol 2017;62:L41–50. https://doi.org/10.1088/1361-6560/aa9517.
[2] A.M. Werensteijn-Honingh P.S. Kroon D. Winkel E.M. Aalbers B. van Asselen G.H. Bol Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: Multi-fraction treatment of pelvic lymph node oligometastases Radiother Oncol 134 2019 50 54 10.1016/j.radonc.2019.01.024 Werensteijn-Honingh AM, Kroon PS, Winkel D, Aalbers EM, van Asselen B, Bol GH, et al. Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: Multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol 2019;134:50–4. https://doi.org/10.1016/J.RADONC.2019.01.024.
[3] J.J.W. Lagendijk B.W. Raaymakers M. van Vulpen The Magnetic Resonance Imaging–Linac System Semin Radiat Oncol 24 3 2014 207 209 10.1016/j.semradonc.2014.02.009 Lagendijk JJW, Raaymakers BW, van Vulpen M. The Magnetic Resonance Imaging–Linac System. Semin Radiat Oncol 2014;24:207–9. https://doi.org/10.1016/j.semradonc.2014.02.009.
[4] D. Winkel G.H. Bol P.S. Kroon B. van Asselen S.S. Hackett A.M. Werensteijn-Honingh Adaptive radiotherapy: The Elekta Unity MR-linac concept Clin Transl Radiat Oncol 18 2019 54 59 10.1016/j.ctro.2019.04.001 Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol 2019;18:54–9. https://doi.org/10.1016/j.ctro.2019.04.001.
[5] A.U. Pathmanathan N.J. van As L.G.W. Kerkmeijer J. Christodouleas C.A.F. Lawton D. Vesprini Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A “Game Changer” for Prostate Treatment? Int J Radiat Oncol Biol Phys 100 2 2018 361 373 10.1016/j.ijrobp.2017.10.020 Pathmanathan AU, van As NJ, Kerkmeijer LGW, Christodouleas J, Lawton CAF, Vesprini D, et al. Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A “Game Changer” for Prostate Treatment? Int J Radiat Oncol Biol Phys 2018;100:361–73. https://doi.org/10.1016/j.ijrobp.2017.10.020.
[6] G.H. Bol A.N.T.J. Kotte U.A. van der Heide J.J.W. Lagendijk Simultaneous multi-modality ROI delineation in clinical practice Comput Methods Programs Biomed 96 2 2009 133 140 10.1016/j.cmpb.2009.04.008 Bol GH, Kotte ANTJ, van der Heide UA, Lagendijk JJW. Simultaneous multi-modality ROI delineation in clinical practice. Comput Methods Programs Biomed 2009;96:133–40. https://doi.org/10.1016/j.cmpb.2009.04.008.
[7] I.M. Lips U.A. van der Heide K. Haustermans E.NJT. van Lin F. Pos S.PG. Franken Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial Trials 12 1 2011 10.1186/1745-6215-12-255 Lips IM, van der Heide UA, Haustermans K, van Lin ENJT, Pos F, Franken SPG, et al. Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): Study protocol for a randomized controlled trial. Trials 2011;12:255. https://doi.org/10.1186/1745-6215-12-255.
null
[9] G.M. Villeirs K. Van Vaerenbergh L. Vakaet S. Bral F. Claus W.J. De Neve Interobserver Delineation Variation Using CT versus Combined CT + MRI in Intensity–Modulated Radiotherapy for Prostate Cancer Strahlenther Onkol 181 7 2005 424 430 10.1007/s00066-005-1383-x Villeirs GM, Van Vaerenbergh K, Vakaet L, Bral S, Claus F, De Neve WJ, et al. Interobserver Delineation Variation Using CT versus Combined CT + MRI in Intensity–Modulated Radiotherapy for Prostate Cancer. Strahlentherapie Und Onkol 2005;181:424–30. https://doi.org/10.1007/s00066-005-1383-x.
[10] C. Rasch I. Barillot P. Remeijer A. Touw M. van Herk J.V. Lebesque Definition of the prostate in CT and MRI: a multi-observer study Int J Radiat Oncol 43 1 1999 57 66 10.1016/S0360-3016(98)00351-4 Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque J V. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol 1999;43:57–66. https://doi.org/10.1016/S0360-3016(98)00351-4.
[11] F. Alongi M. Rigo V. Figlia F. Cuccia N. Giaj-Levra L. Nicosia 1.5 T MR-guided and daily adapted SBRT for prostate cancer: Feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment Radiat Oncol 15 2020 1 9 10.1186/s13014-020-01510-w Alongi F, Rigo M, Figlia V, Cuccia F, Giaj-Levra N, Nicosia L, et al. 1.5 T MR-guided and daily adapted SBRT for prostate cancer: Feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment. Radiat Oncol 2020;15:1–9. https://doi.org/10.1186/s13014-020-01510-w.
[12] A.S. Bertelsen T. Schytte P.K. Møller F. Mahmood H.L. Riis K.L. Gottlieb First clinical experiences with a high field 1.5 T MR linac Acta Oncol 58 10 2019 1352 1357 10.1080/0284186X.2019.1627417 Bertelsen AS, Schytte T, Møller PK, Mahmood F, Riis HL, Gottlieb KL, et al. First clinical experiences with a high field 1.5 T MR linac. Acta Oncol (Madr) 2019;58:1352–7. https://doi.org/10.1080/0284186X.2019.1627417.
[13] A. Dunlop A. Mitchell A. Tree H. Barnes L. Bower J. Chick Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac Clin Transl Radiat Oncol 23 2020 35 42 10.1016/j.ctro.2020.04.011 Dunlop A, Mitchell A, Tree A, Barnes H, Bower L, Chick J, et al. Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac. Clin Transl Radiat Oncol 2020;23:35–42. https://doi.org/10.1016/j.ctro.2020.04.011.
[14] A.U. Pathmanathan H.A. McNair M.A. Schmidt D.H. Brand L. Delacroix C.L. Eccles Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy Br J Radiol 92 1096 2019 20180948 10.1259/bjr.20180948 Pathmanathan AU, McNair HA, Schmidt MA, Brand DH, Delacroix L, Eccles CL, et al. Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy. Br J Radiol 2019;92:20180948. https://doi.org/10.1259/bjr.20180948.
[15] D. Roach L.C. Holloway M.G. Jameson J.A. Dowling A. Kennedy P.B. Greer Multi‐observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest J Med Imaging Radiat Oncol 63 2 2019 264 271 10.1111/1754-9485.12844 Roach D, Holloway LC, Jameson MG, Dowling JA, Kennedy A, Greer PB, et al. Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest. J Med Imaging Radiat Oncol 2019;63:264–71. https://doi.org/10.1111/1754-9485.12844.
[16] B.L. King W.M. Butler G.S. Merrick B.S. Kurko J.L. Reed B.C. Murray Electromagnetic Transponders Indicate Prostate Size Increase Followed by Decrease During the Course of External Beam Radiation Therapy Int J Radiat Oncol Biol Phys 79 5 2011 1350 1357 10.1016/j.ijrobp.2009.12.053 King BL, Butler WM, Merrick GS, Kurko BS, Reed JL, Murray BC, et al. Electromagnetic Transponders Indicate Prostate Size Increase Followed by Decrease During the Course of External Beam Radiation Therapy. Int J Radiat Oncol 2011;79:1350–7. https://doi.org/10.1016/J.IJROBP.2009.12.053.
[17] A.M. Nichol K.K. Brock G.A. Lockwood D.J. Moseley T. Rosewall P.R. Warde A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers Int J Radiat Oncol 67 1 2007 48 56 10.1016/j.ijrobp.2006.08.021 Nichol AM, Brock KK, Lockwood GA, Moseley DJ, Rosewall T, Warde PR, et al. A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers. Int J Radiat Oncol 2007;67:48–56. https://doi.org/10.1016/J.IJROBP.2006.08.021.
[18] G. Sanguineti M. Marcenaro P. Franzone F. Foppiano V. Vitale Neoadjuvant androgen deprivation and prostate gland shrinkage during conformal radiotherapy Radiother Oncol 66 2 2003 151 157 10.1016/S0167-8140(03)00031-8 Sanguineti G, Marcenaro M, Franzone P, Foppiano F, Vitale V. Neoadjuvant androgen deprivation and prostate gland shrinkage during conformal radiotherapy. Radiother Oncol 2003;66:151–7. https://doi.org/10.1016/s0167-8140(03)00031-8.
[19] A. Gunnlaugsson E. Kjellén O. Hagberg C. Thellenberg-Karlsson A. Widmark P. Nilsson Change in prostate volume during extreme hypo-fractionation analysed with MRI Radiat Oncol 9 1 2014 10.1186/1748-717X-9-22 Gunnlaugsson A, Kjellen E, Hagberg O, Thellenberg-Karlsson C, Widmark A, Nilsson P. Change in prostate volume during extreme hypo-fractionation analysed with MRI. Radiat Oncol 2014;9:22. https://doi.org/10.1186/1748-717X-9-22.
[20] M.J. Gooding A.J. Smith M. Tariq P. Aljabar D. Peressutti J. Stoep Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test Med. Phys. 45 11 2018 5105 5115 10.1002/mp.13200 Gooding MJ, Smith AJ, Tariq M, Aljabar P, Peressutti D, van der Stoep J, et al. Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test. Med Phys 2018;45:5105–15. https://doi.org/10.1002/mp.13200.