Evaluation of cotton germplasm for morphological and biochemical host plant resistance traits against sucking insect pests complex

Muhammad Rizwan1, Saifullah Abro1, Muhammad Asif1, Amjad Hameed2, Wajid Mahboob3, Z. A. Deho1, Mahboob Ali Sial1
1Nuclear Institute of Agriculture (NIA), Tandojam, Sindh, 70060, Pakistan
2Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
3College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Tóm tắt

AbstractBackgroundSucking insect pests cause severe damage to cotton crop production. The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses. Considering the role of morphological and biochemical host plant resistance (HPR) traits in plant defense, 12 cotton genotypes/varieties were evaluated for leaf area, leaf glanding, total soluble sugars, total soluble proteins, total phenolics, tannin and total flavonoids against fluctuating populations of whitefly, thrips and jassid under field conditions.ResultsThe population of these insects fluctuated during the growing season and remained above threshold level (whitefly > 5, thrips > (8–10), or jassid > 1 per leaf) during late June and early July. Strong and negative association of whitefly (r = − 0.825) and jassid (r = − 0.929) with seed cotton yield was observed. Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30. NIAB-Kiran followed by NIAB-878 and Sadori were the most resistant, with the mean population of 1.41, 1.60, 1.66 (whitefly); 2.24, 2.32, 2.53 (thrips) and 0.37, 0.31, 0.36 (jassid), respectively. The resistant variety NIAB-Kiran showed less soluble sugars (8.54 mg·g− 1), soluble proteins (27.11 mg·g− 1) and more phenolic (36.56 mg·g− 1) and flavonoids (13.10 mg·g− 1) as compared with the susceptible check Glandless-1. Moreover, all insect populations were positively correlated with total soluble sugars and proteins. Whitefly populations exhibited negative response to leaf gossypol glands, total phenolics, tannins and flavonoids. The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits.ConclusionThe identified resistant resources and HPR traits can be deployed against sucking insect pests’ complex in future breeding programs of developing insect resistant cotton varieties.

Từ khóa


Tài liệu tham khảo

Acharya VS, Singh AP. Biochemical basis of resistance in cotton to the whitefly, Bemisia tabaci Genn. J Cotton Res Dev. 2008;22(2):195–9.

Ahmad N, Khan M, Tofique M, et al. Insect pests management of Bt cotton through the manipulation of different eco-friendly techniques. Nucleus. 2011;48(3):249–54.

Amjad A, Aheer GM. Varietal resistance against sucking insect pests of cotton under Bahawalpur ecological conditions. J Agric Res. 2007;45:205–8.

Arif MJ, Gogi MD, Ahmad G. Role of morpho-physical plant factors imparting resistance in cotton against thrips, Thrips tabaci Lind. (Thripidae: Thysanoptera). Arab J Pl Prot. 2006;24:57–60.

Arshad M, Anjum S. Studying the sucking insect pests community in transgenic Bt cotton. Intern J Agric Biol. 2010;12(5):764–8.

Aslam M, Razaq M, Shah SA, et al. Comparative efficacy of different insecticides against sucking pests of cotton. J Res Sci. 2004;15:53–8.

Aslam M, Saeed NA. Comparative resistance of different cotton genotypes against sucking insect pest complex of cotton. Sarhad J Agric. 2004;20(3):441–5.

Athar H, Bhatti AR, Bashir N, et al. Modulating infestation rate of white fly (Bemicia tabaci) on okra (Hibiscus esculentus L.) by nitrogen application. Acta Physiol Plant. 2011;33:843–50. https://doi.org/10.1007/s11738-010-0609-4.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1006/abio.1976.9999.

Burns RE. Method for estimation of tannin in grain sorghum. Agron J. 1971;63(3):511–2. https://doi.org/10.2134/agronj1971.00021962006300030050x.

Butter NS, Vir BK, Kaur G, et al. Biochemical basis of resistance to whitefly Bemisia tabaci Genn. (Aleyrodidae: Hemiptera) in cotton. Trop Agric. 1992;69(2):119–22.

Chang CC, Yang MH, Wen HM, et al. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178–82. https://doi.org/10.38212/2224-6614.2748.

Costa DB, Souza B, Carvahlo GA, et al. Residual action of insecticides to larvae of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) under greenhouse conditions. Cienc Agrotec Lavras. 2003;27(4):835–9.

Dixit G, Praveen A, Tripathi T, et al. Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J Asia-Pac Entomol. 2017;20(2):341–51. https://doi.org/10.1016/j.aspen.2017.02.002.

Dubois M, Gilles KA, Hamilton JK, et al. A colorimetric method for the determination of sugars. Nature. 1951;168(4265):167. https://doi.org/10.1038/168167a0.

Government of Pakistan. Economic survey of Pakistan. Islamabad: Finance Division Economic Adviser’s Wing; 2017–2018.

Irfan M, Mumtaz I, Raza ABM, et al. Effect of leaf morphology on the incidence of sucking insect pests in some cotton genotypes. Int J Cell Mol Biol. 2008;1(3):285–91.

Khalil H, Bakar A, Raza M, et al. Effect of plant morphology on the incidence of sucking insect pests complex in few genotypes of cotton. J Saudi Soc Agric Sci. 2017;16:344–9. https://doi.org/10.1016/j.jssas.2015.11.003.

Khan MA, Akram W, Khan HAA, et al. Impact of Bt-cotton on whitefly, Bemisia tabaci (Genn.) population. Pak J Agric Sci. 2010;47(4):327–32.

Khan MT, Naeem M, Akram M. Studies on the varietal resistance of cotton against insect pest complex of cotton. Sarhad J Agri. 2003;19:93–6.

Nemade PW, Budhvat KP, Wadaskar PS. Population dynamics of sucking pests with relation to weather parameters in Bt cotton in Buldana district, Maharashtra, India. Int J Curr Microbiol App Sci. 2018;7(1):620–6.

Nizamani IA, Talpur MA, Khuhro RD, et al. Relative resistance of cotton cultivars to sucking complex. Pak J Appl Sci. 2002;2(6):686–9.

Oerke EC. Crop losses to pests. J Agric Sci. 2006;144:31–43. https://doi.org/10.1017/S0021859605005708.

Pathan AK, Chohan S, Leghari MA, et al. Comparative resistance of different cotton genotypes against insect pest complex of cotton. Sarhad J Agric. 2007;23(1):141–3.

Perveen SS, Qaisrani TM, Amin S, et al. Biochemical basis of insect resistance in cotton. J Biol Sci. 2001;1(6):496–500. https://doi.org/10.3923/jbs.2001.496.500.

Razaq M, Suhail A, Aslam M, et al. Patterns of insecticides used on cotton before introduction of genetically modified cotton in southern Punjab, Pakistan. Pak J Zool. 2013;45:574–7.

Romano GB, Scheffler JA. Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines. Plant Breed. 2008;127:619–24. https://doi.org/10.1111/j.1439-0523.2008.01545.x.

Saleem MJ, Hafeez F, Arshad M, et al. Population dynamics of sucking pests on transgenic Bt cotton in relation with abiotic factors and physio-morphological plant characters. J Entomol Zool Stud. 2018;6(6):163–6.

Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 1965;16:144–58.

Sonalkar VU. Biochemicals in cotton hybrids and varieties and their correlation with sucking insect pests. Int J Curr Microbiol App Sci. 2020;9(1):1172–83.

Steel RGD, Torrie JH, Dickey DA. Principles and procedures of statistics: a biometrical approach. New York: McGraw Hill Book Co. Inc; 1997. p. 400–28.

War AR, Paulraj MG, Ahmad T, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7:1306–20. https://doi.org/10.4161/psb.21663.

Zia K, Ashfaq M, Arif MJ, et al. Effect of physico-morphic characters on population of whitefly, Bemisia tabaci in transgenic cotton. Pak J Agri Sci. 2011;48(1):63–9.