Evaluation of classes of definite integrals involving elementary functions via differentiation of special functions

K. O. Geddes1, M. L. Glasser2, R. A. Moore3, T Scott4,3
1Department of Computer Science, University of Waterloo, Waterloo, Canada
2Department of Physics and Department of Mathematics and Computer Science, Clarkson University, Potsdam, USA
3Guelph-Waterloo Program for Graduate Work in Physics, Waterloo Campus, USA
4the Institute for Theoretical Atomic and Molecular Physics at the Harvard—Smithsonian Center for Astrophysics, Cambridge, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York; Dover 1970 (9th printing)

Bronstein, Manuel, Integration of Elementary Functions. Berkeley, California: University of California 1987 (Ph.D. thesis)

Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., Watt, S. M.: Maple Reference Manual, 5th ed. Ontario, Canada: Watcom Waterloo 1988

Cherry, G.: Integration in finite terms with special functions: the error function. J. Symb. Comput.1, 283–302 (1985)

Cherry, G.: Integration in finite terms with special functions: the logarithmic integral. SIAM J. Comput.15, 1–21 (1986)

Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of integral transforms. Vol. I, New York: McGraw-Hill 1954

Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. II, New York: McGraw-Hill 1954

Geddes, K. O., Scott, T. C.: Recipes for classes of definite integrals involving exponentials and logarithms, In: Proceedings of Computers and Mathematics, pp. 192–201; Kaltofen E., Watt S. M. (eds.), (conference held at MIT) Berlin, Heidelberg, New York: Springer 1989

Kölbig, K. S.: Closed expressions for $$\int\limits_0^1 {t^{ - 1} \log ^{n - 1} t\log ^p (1 - t)dt} $$ . Math. Comp.39, 647–654 (1982)

Kölbig, K. S.: On the integral $$\int\limits_0^{\pi /2} {\log ^n \cos x\log ^p \sin xdx} $$ . Math. Comp.40, 565–570 (1983)

Kölbig, K. S.: Explicit evaluation of certain definite integrals involving powers of logarithms. J. Symb. Comput.1, 109–114 (1985)

Kölbig, K. S.: On the integral $$\int\limits_0^\infty {e^{ - \mu t} t^{v - 1} \log ^m tdt} $$ . Math. Comp.41, 171–182 (1985)

Kölbig, K. S.: On the integral $$\int\limits_0^\infty {x^{v - 1} (1 + \beta x)^{ - \lambda } \ln ^m xdx} $$ . J. Comp. Appl. Math.14, 319–344 (1986)

Luke, Y. L.: The special functions and their approximations. Vol. 1, New York, London: Academic Press 1969

Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and series, Gordon & Breach Science, 2nd printing, New York (1988). Vol. 1, Translated from the Russian “Integraly i ryady by Nauka” (1981)

Risch, R. H.: The problem of integration in finite terms. Trans. Am. Math. Soc.139, 167–189 (1969)

Scott, T. C.: A new approach to definite integration for maple 4.3, Maple Newsletter no. 3 (Symbolic Computation Group), Ontario: Waterloo (1988)

Scott, T. C., Moore, R. A., Fee, G. J., Monagan, M. B., Labahn, G., Geddes, K. O.: Perturbative Solutions of Quantum Mechanical Problems by Symbolic Computation: A Review. Int. J. Mod. Phys. C1, 53–76 (1990). (Invitation from World Scientific)

Trager, Barry M.: Integration of algebraic functions. Cambridge, MA: Massachusetts Institute of Technology 1984. (Ph.D. thesis)

Wang, P.S.: Evaluation of definite integrals by symbolic manipulation. Cambridge, MA: Massachusetts Institute of Technology, 1971. (Ph.D. thesis)