Evaluation of classes of definite integrals involving elementary functions via differentiation of special functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York; Dover 1970 (9th printing)
Bronstein, Manuel, Integration of Elementary Functions. Berkeley, California: University of California 1987 (Ph.D. thesis)
Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., Watt, S. M.: Maple Reference Manual, 5th ed. Ontario, Canada: Watcom Waterloo 1988
Cherry, G.: Integration in finite terms with special functions: the error function. J. Symb. Comput.1, 283–302 (1985)
Cherry, G.: Integration in finite terms with special functions: the logarithmic integral. SIAM J. Comput.15, 1–21 (1986)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of integral transforms. Vol. I, New York: McGraw-Hill 1954
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. II, New York: McGraw-Hill 1954
Geddes, K. O., Scott, T. C.: Recipes for classes of definite integrals involving exponentials and logarithms, In: Proceedings of Computers and Mathematics, pp. 192–201; Kaltofen E., Watt S. M. (eds.), (conference held at MIT) Berlin, Heidelberg, New York: Springer 1989
Kölbig, K. S.: Closed expressions for $$\int\limits_0^1 {t^{ - 1} \log ^{n - 1} t\log ^p (1 - t)dt} $$ . Math. Comp.39, 647–654 (1982)
Kölbig, K. S.: On the integral $$\int\limits_0^{\pi /2} {\log ^n \cos x\log ^p \sin xdx} $$ . Math. Comp.40, 565–570 (1983)
Kölbig, K. S.: Explicit evaluation of certain definite integrals involving powers of logarithms. J. Symb. Comput.1, 109–114 (1985)
Kölbig, K. S.: On the integral $$\int\limits_0^\infty {e^{ - \mu t} t^{v - 1} \log ^m tdt} $$ . Math. Comp.41, 171–182 (1985)
Kölbig, K. S.: On the integral $$\int\limits_0^\infty {x^{v - 1} (1 + \beta x)^{ - \lambda } \ln ^m xdx} $$ . J. Comp. Appl. Math.14, 319–344 (1986)
Luke, Y. L.: The special functions and their approximations. Vol. 1, New York, London: Academic Press 1969
Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and series, Gordon & Breach Science, 2nd printing, New York (1988). Vol. 1, Translated from the Russian “Integraly i ryady by Nauka” (1981)
Scott, T. C.: A new approach to definite integration for maple 4.3, Maple Newsletter no. 3 (Symbolic Computation Group), Ontario: Waterloo (1988)
Scott, T. C., Moore, R. A., Fee, G. J., Monagan, M. B., Labahn, G., Geddes, K. O.: Perturbative Solutions of Quantum Mechanical Problems by Symbolic Computation: A Review. Int. J. Mod. Phys. C1, 53–76 (1990). (Invitation from World Scientific)
Trager, Barry M.: Integration of algebraic functions. Cambridge, MA: Massachusetts Institute of Technology 1984. (Ph.D. thesis)
Wang, P.S.: Evaluation of definite integrals by symbolic manipulation. Cambridge, MA: Massachusetts Institute of Technology, 1971. (Ph.D. thesis)