Evaluation of chemiluminescence, toluidine blue and histopathology for detection of high risk oral precancerous lesions: A cross-sectional study
Tóm tắt
Early detection holds the key to an effective control of cancers in general and of oral cancers in particular. However, screening procedures for oral cancer are not straightforward due to procedural requirements as well as feasibility issues, especially in resource-limited countries. We conducted a cross-sectional study to compare the performance of chemiluminescence, toluidine blue and histopathology for detection of high-risk precancerous oral lesions. We evaluated 99 lesions from 55 patients who underwent chemiluminescence and toluidine blue tests along with biopsy and histopathological examination. We studied inter-as well as intra-rater agreement in the histopathological evaluation and then using latent class modeling, we estimated the operating characteristics of these tests in the absence of a reference standard test. There was a weak inter-rater agreement (kappa < 0.15) as well as a weak intra-rater reproducibility (Pearson's r = 0.28, intra-class correlation rho = 0.03) in the histopathological evaluation of potentially high-risk precancerous lesions. When compared to histopathology, chemiluminescence and toluidine blue retention had a sensitivity of 1.00 and 0.59, respectively and a specificity of 0.01 and 0.79, respectively. However, latent class analysis indicated a low sensitivity (0.37) and high specificity (0.90) of histopathological evaluation. Toluidine blue had a near perfect high sensitivity and specificity for detection of high-risk lesions. In our study, there was variability in the histopathological evaluation of oral precancerous lesions. Our results indicate that toluidine blue retention test may be better suited than chemiluminescence to detect high-risk oral precancerous lesions in a high-prevalence and low-resource setting like India.
Tài liệu tham khảo
Mignogna MD, Fedele S, Lo Russo L: The World Cancer Report and the burden of oral cancer. Eur J Cancer Prev. 2004, 13 (2): 139-142.
Petersen PE: Oral cancer prevention and control-the approach of the World Health Organization. Oral Oncol. 2009, 45 (4-5): 454-460. 10.1016/j.oraloncology.2008.05.023.
Mehrotra R, Singh M, Thomas S, Nair P, Pandya S, Nigam NS, Shukla P: A cross-sectional study evaluating chemiluminescence and autofluorescence in the detection of clinically innocuous precancerous and cancerous oral lesions. J Am Dent Assoc. 2010, 141 (2): 151-156.
Yeole BB, Sankaranarayanan R, Sunny MSL, Swaminathan R, Parkin DM: Survival from head and neck cancer in Mumbai (Bombay), India. Cancer. 2000, 89 (2): 437-444. 10.1002/1097-0142(20000715)89:2<437::AID-CNCR32>3.0.CO;2-R.
Sankaranarayanan R: Screening for cervical and oral cancers in India is feasible and effective. Natl Med J India. 2005, 18 (6): 281-284.
Sankaranarayanan R, Boffetta P: Research on cancer prevention, detection and management in low- and medium-income countries. Ann Oncol. 2010, 21 (10): 1935-1943. 10.1093/annonc/mdq049.
Sankaranarayanan R, Dinshaw K, Nene BM, Ramadas K, Esmy PO, Jayant K, Somanathan T, Shastri S: Cervical and oral cancer screening in India. J Med Screen. 2006, 13 (Suppl 1): S35-S38.
Sankaranarayanan R, Mathew B, Jacob BJ, Thomas G, Somanathan T, Pisani P, Pandey M, Ramadas K, Najeeb K, Abraham E: Early findings from a community-based, cluster-randomized, controlled oral cancer screening trial in Kerala, India. The Trivandrum Oral Cancer Screening Study Group. Cancer. 2000, 88 (3): 664-673. 10.1002/(SICI)1097-0142(20000201)88:3<664::AID-CNCR25>3.0.CO;2-V.
Trullenque-Eriksson A, Munoz-Corcuera M, Campo-Trapero J, Cano-Sanchez J, Bascones-Martinez A: Analysis of new diagnostic methods in suspicious lesions of the oral mucosa. Med Oral Patol Oral Cir Bucal. 2009, 14 (5): E210-E216.
Patton LL, Epstein JB, Kerr AR: Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J Am Dent Assoc. 2008, 139 (7): 896-905. quiz 993-894
Sciubba JJ: Improving detection of precancerous and cancerous oral lesions. Computer-assisted analysis of the oral brush biopsy. U.S. Collaborative OralCDx Study Group. J Am Dent Assoc. 1999, 130 (10): 1445-1457.
Brandwein-Gensler M, Smith RV, Wang B, Penner C, Theilken A, Broughel D, Schiff B, Owen RP, Smith J, Sarta C, et al: Validation of the histologic risk model in a new cohort of patients with head and neck squamous cell carcinoma. Am J Surg Pathol. 2010, 34 (5): 676-688.
Kerr AR, Sirois DA, Epstein JB: Clinical evaluation of chemiluminescent lighting: an adjunct for oral mucosal examinations. J Clin Dent. 2006, 17 (3): 59-63.
Ram S, Siar CH: Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. Int J Oral Maxillofac Surg. 2005, 34 (5): 521-527. 10.1016/j.ijom.2004.10.008.
Huff KD: More about cancer detection. J Am Dent Assoc. 2010, 141 (6): 626-628. author reply 628, 630
Truelove EL: Detecting oral cancer. J Am Dent Assoc. 2010, 141 (6): 626-author reply 628, 630
Oliver RJ, MacDonald DG, Felix DH: Aspects of cell proliferation in oral epithelial dysplastic lesions. J Oral Pathol Med. 2000, 29 (2): 49-55. 10.1034/j.1600-0714.2000.290201.x.
Warnakulasuriya S, Reibel J, Bouquot J, Dabelsteen E: Oral epithelial dysplasia classification systems: predictive value, utility, weaknesses and scope for improvement. J Oral Pathol Med. 2008, 37 (3): 127-133. 10.1111/j.1600-0714.2007.00584.x.
Dendukuri N, Hadgu A, Wang L: Modeling conditional dependence between diagnostic tests: a multiple latent variable model. Stat Med. 2009, 28 (3): 441-461. 10.1002/sim.3470.
Ihorst G, Forster J, Petersen G, Werchau H, Rohwedder A, Schumacher M: The use of imperfect diagnostic tests had an impact on prevalence estimation. J Clin Epidemiol. 2007, 60 (9): 902-910. 10.1016/j.jclinepi.2006.11.016.
Koukounari A, Webster JP, Donnelly CA, Bray BC, Naples J, Bosompem K, Shiff C: Sensitivities and specificities of diagnostic tests and infection prevalence of Schistosoma haematobium estimated from data on adults in villages northwest of Accra, Ghana. Am J Trop Med Hyg. 2009, 80 (3): 435-441.
Yang I, Becker MP: Latent variable modeling of diagnostic accuracy. Biometrics. 1997, 53 (3): 948-958. 10.2307/2533555.
Bertrand P, Benichou J, Grenier P, Chastang C: Hui and Walter's latent-class reference-free approach may be more useful in assessing agreement than diagnostic performance. J Clin Epidemiol. 2005, 58 (7): 688-700. 10.1016/j.jclinepi.2004.10.021.
Albert PS, Dodd LE: On Estimating Diagnostic Accuracy From Studies With Multiple Raters and Partial Gold Standard Evaluation. J Am Stat Assoc. 2008, 103 (481): 61-73. 10.1198/016214507000000329.
Baughman AL, Bisgard KM, Cortese MM, Thompson WW, Sanden GN, Strebel PM: Utility of composite reference standards and latent class analysis in evaluating the clinical accuracy of diagnostic tests for pertussis. Clin Vaccine Immunol. 2008, 15 (1): 106-114. 10.1128/CVI.00223-07.
Chu H, Zhou Y, Cole SR, Ibrahim JG: On the estimation of disease prevalence by latent class models for screening studies using two screening tests with categorical disease status verified in test positives only. Stat Med. 2010, 29 (11): 1206-1218.
Toft N, Jorgensen E, Hojsgaard S: Diagnosing diagnostic tests: evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard. Prev Vet Med. 2005, 68 (1): 19-33. 10.1016/j.prevetmed.2005.01.006.
Rana M, Zapf A, Kuehle M, Gellrich NC, Eckardt AM: Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection: a prospective randomized diagnostic study. Eur J Cancer Prev. 2012, doi: 10.1097/CEJ.0b013e32834fdb6d
Awan KH, Morgan PR, Warnakulasuriya S: Evaluation of an autofluorescence based imaging system (VELscope) in the detection of oral potentially malignant disorders and benign keratoses. Oral Oncol. 2011, 47 (4): 274-277. 10.1016/j.oraloncology.2011.02.001.
Driemel O, Kunkel M, Hullmann M, von Eggeling F, Muller-Richter U, Kosmehl H, Reichert TE: Diagnosis of oral squamous cell carcinoma and its precursor lesions. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology: JDDG. 2007, 5 (12): 1095-1100. 10.1111/j.1610-0387.2007.06397.x.
Seoane Leston J, Diz Dios P: Diagnostic clinical aids in oral cancer. Oral Oncol. 2010, 46 (6): 418-422. 10.1016/j.oraloncology.2010.03.006.
Epstein JB, Silverman S, Epstein JD, Lonky SA, Bride MA: Analysis of oral lesion biopsies identified and evaluated by visual examination, chemiluminescence and toluidine blue. Oral Oncol. 2008, 44 (6): 538-544. 10.1016/j.oraloncology.2007.08.011.
Guneri P, Epstein JB, Kaya A, Veral A, Kazandi A, Boyacioglu H: The utility of toluidine blue staining and brush cytology as adjuncts in clinical examination of suspicious oral mucosal lesions. Int J Oral Maxillofac Surg. 2011, 40 (2): 155-161. 10.1016/j.ijom.2010.10.022.
Epstein JB, Guneri P: The adjunctive role of toluidine blue in detection of oral premalignant and malignant lesions. Current opinion in otolaryngology & head and neck surgery. 2009, 17 (2): 79-87. 10.1097/MOO.0b013e32832771da.
Patton LL: The effectiveness of community-based visual screening and utility of adjunctive diagnostic aids in the early detection of oral cancer. Oral Oncol. 2003, 39 (7): 708-723. 10.1016/S1368-8375(03)00083-6.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6890/12/6/prepub