Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum

Narasimhamurthy Konappa1, Sairam Krishnamurthy2, Chandra Nayaka Siddaiah1, Niranjana Siddapura Ramachandrappa1, Ch. Srinivas3
1Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570 006, India
2Department of Microbiology, Field Marshal K. M. Cariappa College, Constituent College of Mangalore University, Madikeri, Kodagu, Karnataka, India
3Department of Microbiology and Biotechnology, Bangalore University, Jnanabharathi Campus, Bangalore, Karnataka, 560 056, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito SI, Tran LS (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci 246:128–138

Alka, Patil RK, Prajapati BK (2017) Effect of Trichoderma Spp. and its culture filtrate antagonists on growth and management of Rhizopus rot of tomato fruit in vitro and in vivo. J Pharmacogn Phytochem 6(4):394–398

Avinash P, Umesha S, Raghava S, Shirin M (2016) Discrimination of Ralstonia solanacearum isolates by genetic signatures produced by single-strand conformation polymorphism and low-stringency single specific primer PCR analysis. Afr J Microbiol Res 10:1128–1139

Bi JL, Felton GW (1995) Foliar oxidative and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21:1511–1530

Caruso C, Chilosi G, Leonardi L, Bertini L, Magro P, Buonocore V, Caporale C (2001) A basic peroxidase from wheat kernel with antifungal activity. Phytochemistry 72:248–254

Chunhua S, Ya D, Bingle X, Xiao L, Yonshu X, Qinguang L (2001) The purification and spectral properties of PPO I from Nicotianan tababcum. Plant Mol Biol 19:301–314

Dalal NR, Dalal SR, Dalal V, Golliwar G, Khobragade RI (1999) Studies on grading and prepackaging of some bacterial wilt resistant brinjal (Solanum melongena L.) varieties. J Soils Crops 9:223–226

Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against cucumber mosaic virus by Penicillium simplicissimum GP17–2 in Arabidopsis and tobacco. Plant Pathol 61:964–976

Hamed ER, Awad HM, Ghazi EA, El-Gamal NG, Shehata HS (2015) Trichoderma asperellum isolated from salinity soil using rice straw waste as biocontrol agent for cowpea plant pathogens. J Appl Pharm Sci 5:091–098

Hammerschmidt R, Nuckles EM, Kucm J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

Huang XQ, Chen LH, Ran W, Shen QR, Yang XM (2011) Trichoderma sp. strain SQR-T37 and its bioorganic fertilizer could control Rhizoctonia solani damping off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 91:741–755

Jayaraman KS, Ramanuja MN, Vijayarahavan PK, Vaidyanathan CS (1987) Oxidative enzyme in pearl millet. Food Chem 24:203

Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

Karthikeyan M, Jayakumar V, Radhika K, Bhaskaran R, Velazhahan R, Alice D (2005) Induction of resistance in host against the infection of leaf blight pathogen (Alternaria palandui) in onion (Allium cepa var aggregatum). Indian J Biochem Biophys 42(6):371–377

Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:639–695

Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, India, pp 35–52

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

Li YT, Hwang SG, Huang YM, Huang CH (2017) Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot 1(8). doi: https://doi.org/10.1016/j.cropro.2017.03.021

Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of amode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 55:673–683

Liu YX, Shi JX, Feng YG, Yang XM, Li X, Shen QR (2012) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 47:239–248

Lopes FAC, Stendorff AS, Geraldine AM, Brandao RS, Monteiro VN, Junior ML, Coelho ASG, Ulhon CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116:815–824

Lowry OH, Rosebrough NH, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

Macdonald MJ, Dcunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

Manjunatha SV, Naik MK, Khan MFR, Goswami RS (2013) Evaluation of bio-control agents for management of dry root rot of chickpea caused by Macrophomina phaseolina. Crop Prot 45:147–150

Mayer AM, Harel E, Shaul RB (1965) Assay of catechol oxidase a critical comparison of methods. Phytochemistry 5:783–789

Nadolny L, Sequeira L (1980) Increases in peroxidase activities are not directly involved in induced resistance in tobacco. Physiol Plant Pathol 16:1–8

Narasimha Murthy K, Malini M, Fazilath U, Soumya KK, Chandra NS, Niranjana SR, Srinivas C (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic 207:183–192

Narasimha Murthy K, Nirmala Devi D, Srinivas C (2013) Efficacy of Trichoderma asperellum against Ralstonia solanacearum under greenhouse conditions. Ann Plant Sci 2:342–350

Narasimha Murthy K, Srinivas C (2012) In vitro screening of bioantagonistic agents and plant extracts to control bacterial wilt (Ralstonia solanacearum) of tomato (Lycopersicon esculentum). J Agric Technol 8:999–1015

Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase, beta-1, 3-glucanase, and protein patterns after a single separation using poly-acrylamide gel electrophoresis or isoelectro focusing. Phytopathology 81:970–974

Prasannath K, Dharmadasa KNP, De Costa DM, Hemachandra KS (2014) Variations of incidence, types of virus diseases and insect vector populations of tomato (Solanum lycopersicum L.), grown in different agro- ecological regions of Sri Lanka under two crop management systems. Trop Agric. Res 25(3):376–395

Qualhato TF, Lopes FA, Steindorff AS, Brandao RS, Jesuino RS, Ulhoa CJ (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35:1461–1468

Ramesh R, Achari GA, Gaitonde S (2014) Genetic diversity of Ralstonia solanacearum infecting solanaceous vegetables from India reveals the existence of unknown or newer sequevars of Phylotype I strains. Eur J Plant Pathol 140:543–562

Ran LX, Liu CY, Wu GJ, Van Loon LC, Bakker PAHM (2005) Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol Control 32:111–120

Rojo FG, Reynoso MM, Sofia MF, Chulze N, Torres AM (2007) Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Prot 26:549–555

Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R (2014) Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 80:1864–1873

Saksirirat W, Chareerak P, Bunyatrachata W (2009) Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. Asian J Food Agro-Ind 2:S99–S104

Satish KS, Abhay KP (2016) Biological spectrum of Trichoderma harzianum Rifai isolates to control fungal diseases of tomato (Solanum lycopersicon L.). Arch. Phytopathol. Plant Prot 49:507–521

Schonfeld J, Gelsomino A, Overbeek LS, Gorissen A, Smalla K, Elsas JD (2003) Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol Ecol 43:63–74

Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

Sharma MP, Gaur A, Tanu U, Sharma OP (2004) Prospects of arbuscular mycorrhiza in sustainable management of root and soil borne diseases of vegetable crops. In: Mukerji KG (ed) Disease management of fruits and vegetables, Fruit and vegetable diseases, vol I. Kluwer Academic Publishers, Netherlands, pp 501–539

Siva Prasad B, Kamala G, Sankar Ganesh P (2013) Efficacy of Trichoderma viride to induce disease resistance and antioxidant responses in legume Vigna Mungo infested by Fusarium oxysporum and Alternaria alternata. Int J Agric Sci Res 3(2):285–294

Surekha CH, Neelapu NRR, Prasad BS, Sankar GP (2014) Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria Alternata. Int J Agric Sci Res 4:31–40

Vanitha S, Niranjana S, Mortensen C, Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54:685–695

Vidhyasekaran P (2008) Evasion and detoxification of secondary metabolites. In: Vidhyasekaran P (ed) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, 2nd edn. CRC Press, Boca Raton, pp 411–467

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

Watanabe S, Kunakura K, Izawa N, Nagayama K, Mitachi T, Kanamori M, Teraoka T, Arie T (2007) Mode of action of Trichoderma asperellum SKT-1, a biocontrol agent against Gibberella fujikuroi. J Pestic Sci 32:222–228

Zachow C, Berg C, Muller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170

Zieslin N, Ben-Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flower. Plant Physiol Biochem 31:333–339