Evaluation of bioink printability for bioprinting applications

Applied Physics Reviews - Tập 5 Số 4 - 2018
Zhengyi Zhang1, Yifei Jin2, Jun Yin3, Changxue Xu4, Ruitong Xiong2, Kyle Christensen2, Bradley R. Ringeisen5, Douglas B. Chrisey6, Yong Huang7,8,2
1School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology 1 , Wuhan 430074, People's Republic of China
2Department of Mechanical and Aerospace Engineering, University of Florida 2 , Gainesville, Florida 32611, USA
3College of Mechanical Engineering, Zhejiang University 3 , Hangzhou 310028, China
4Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University 4 , Lubbock, Texas 79409, USA
5Defense Advanced Research Projects Agency 5 , Arlington, Virginia 22203, USA
6Department of Physics and Engineering Physics, Tulane University 6 , New Orleans, Louisiana 70118, USA
7Department of Biomedical Engineering, University of Florida 8 , Gainesville, Florida 32611, USA
8Department of Materials Science and Engineering, University of Florida 7 , Gainesville, Florida 32611, USA

Tóm tắt

Three-dimensional (3D) bioprinting, as a freeform biomedical manufacturing approach, has been increasingly adopted for the fabrication of constructs analogous to living tissues. Generally, materials printed during 3D bioprinting are referred as bioinks, which may include living cells, extracellular matrix materials, cell media, and/or other additives. For 3D bioprinting to be an enabling tissue engineering approach, the bioink printability is a critical requirement as tissue constructs must be able to be printed and reproduce the complex micro-architecture of native tissues in vitro in sufficient resolution. The bioink printability is generally characterized in terms of the controllable formation of well-defined droplets/jets/filaments and/or the morphology and shape fidelity of deposited building blocks. This review presents a comprehensive overview of the studies of bioink printability during representative 3D bioprinting processes, including inkjet printing, laser printing, and micro-extrusion, with a focus on the understanding of the underlying physics during the formation of bioink-based features. A detailed discussion is conducted based on the typical time scales and dimensionless quantities for printability evaluation during bioprinting. For inkjet printing, the Z (the inverse of the Ohnesorge number), Weber, and capillary numbers have been employed for the construction of phase diagrams during the printing of Newtonian fluids, while the Weissenberg and Deborah numbers have been utilized during the printing of non-Newtonian bioinks. During laser printing of Newtonian solutions, the jettability can be characterized using the inverse of the Ohnesorge number, while Ohnesorge, elasto-capillary, and Weber numbers have been utilized to construct phase diagrams for typical non-Newtonian bioinks. For micro-extrusion, seven filament types have been identified including three types of well-defined filaments and four types of irregular filaments. During micro-extrusion, the Oldroyd number has been used to characterize the dimensions of the yielded areas of Herschel-Bulkley fluids. Non-ideal jetting behaviors are common during the droplet-based inkjet and laser printing processes due to the local nonuniformity and nonhomogeneity of cell-laden bioinks.

Từ khóa


Tài liệu tham khảo

1993, Science, 260, 920, 10.1126/science.8493529

2006, Tissue Eng., 12, 3265, 10.1089/ten.2006.12.3265

2014, Principles of Tissue Engineering

2018, J. Manuf. Sci. Eng., 140, 094001, 10.1115/1.4040430

2000, Biomaterials, 21, 2529, 10.1016/S0142-9612(00)00121-6

2005, Nat. Mater., 4, 518, 10.1038/nmat1421

2007, Curr. Opinion Cell Biol., 19, 101, 10.1016/j.ceb.2006.12.002

2012, Science, 338, 921, 10.1126/science.1226340

1994, Nat. Biotechnol., 12, 689, 10.1038/nbt0794-689

1999, Biomaterials, 20, 1133, 10.1016/S0142-9612(99)00011-3

2001, Tissue Eng., 7, 679, 10.1089/107632701753337645

2004, Trends Biotechnol., 22, 195, 10.1016/j.tibtech.2004.02.002

2005, Biomaterials, 26, 6415, 10.1016/j.biomaterials.2005.04.061

2006, Tissue Eng., 12, 2151, 10.1089/ten.2006.12.2151

2009, Soft Matter, 5, 1312, 10.1039/b814285h

2006, Proc. Natl. Acad. Sci. U. S. A., 103, 2480, 10.1073/pnas.0507681102

2007, Tissue Eng., 13, 1, 10.1089/ten.2006.0219

2009, Biomaterials, 30, 2164, 10.1016/j.biomaterials.2008.12.084

2017, Biofabrication, 9, 025038, 10.1088/1758-5090/aa6ed9

2015, J. Manuf. Sci. Eng., 137, 014001, 10.1115/1.4028725

2015, Biotechnol. Bioeng., 112, 1047, 10.1002/bit.25501

2015, Biofabrication, 7, 045011, 10.1088/1758-5090/7/4/045011

2013, Nano Lett., 13, 2634, 10.1021/nl4007744

2012, Biotechnol. Bioeng., 109, 3152, 10.1002/bit.24591

2012, Tissue Eng. A, 18, 1304, 10.1089/ten.tea.2011.0543

2015, Nano Lett., 15, 5321, 10.1021/acs.nanolett.5b01688

2005, Biosens. Bioelectron., 20, 2019, 10.1016/j.bios.2004.09.022

2012, Nat. Chem., 4, 349, 10.1038/nchem.1313

2006, Biomaterials, 27, 3044, 10.1016/j.biomaterials.2005.12.024

2008, Tissue Eng. C, 14, 157, 10.1089/ten.tec.2007.0392

2013, Adv. Healthcare Mater., 2, 534, 10.1002/adhm.201200299

2007, Nat. Methods, 4, 855, 10.1038/nmeth1085

2016, ACS Biomater. Sci. Eng., 2, 1722, 10.1021/acsbiomaterials.6b00129

2014, Nat. Biotechnol., 32, 773, 10.1038/nbt.2958

1999, Macromolecules, 32, 241, 10.1021/ma981296k

2016, Ann. Biomed. Eng., 44, 2090, 10.1007/s10439-016-1638-y

2013, Adv. Mater., 25, 5011, 10.1002/adma.201302042

2016, Chem. Rev., 116, 1496, 10.1021/acs.chemrev.5b00303

2015, Lab Chip, 15, 3111, 10.1039/C5LC90069G

2016, ACS Biomater. Sci. Eng., 2, 1662, 10.1021/acsbiomaterials.6b00088

2017, ACS Biomater. Sci. Eng., 3, 1519, 10.1021/acsbiomaterials.6b00432

2008, Nat. Med., 14, 213, 10.1038/nm1684

2014, Nat. Commun., 5, 3935, 10.1038/ncomms4935

2006, Trends Biotechnol., 24, 299, 10.1016/j.tibtech.2006.04.009

2014, Biofabrication, 6, 035020, 10.1088/1758-5082/6/3/035020

2010, Biofabrication, 2, 022001, 10.1088/1758-5082/2/2/022001

2009, Biomaterials, 30, 5910, 10.1016/j.biomaterials.2009.06.034

2013, Biofabrication, 5, 045007, 10.1088/1758-5082/5/4/045007

2013, Biomater. Sci., 1, 763, 10.1039/c3bm00012e

2016, Biofabrication, 8, 025016, 10.1088/1758-5090/8/2/025016

2015, J. Mater. Chem. B, 3, 3654, 10.1039/C5TB00123D

2015, Macromol. Rapid Commun., 36, 1211, 10.1002/marc.201500079

2014, Biotechnol. Bioeng., 111, 441, 10.1002/bit.25160

2017, Biofabrication, 9, 034103, 10.1088/1758-5090/aa7e96

2015, Adv. Mater., 27, 5075, 10.1002/adma.201501234

2015, Acta Biomater., 11, 162, 10.1016/j.actbio.2014.09.033

1999, Biomaterials, 20, 45, 10.1016/S0142-9612(98)00107-0

2015, J. Adv. Res., 6, 105, 10.1016/j.jare.2013.07.006

2017, Biotechnol. Adv., 35, 217, 10.1016/j.biotechadv.2016.12.006

2003, Biomaterials, 24, 4337, 10.1016/S0142-9612(03)00340-5

2011, MRS Bull., 36, 1043, 10.1557/mrs.2011.276

2012, Lab Chip, 12, 88, 10.1039/C1LC20688E

2018, Small, 14, 1802630, 10.1002/smll.201802630

1973, J. Biomed. Mater. Res., 7, 509, 10.1002/jbm.820070604

2009, Biotechnol. Bioeng., 103, 655, 10.1002/bit.22361

2009, J. Mech. Behav. Biomed. Mater., 2, 588, 10.1016/j.jmbbm.2008.08.001

2011, Expert Rev. Med. Devices, 8, 607, 10.1586/erd.11.27

2001, Chem. Rev., 101, 1869, 10.1021/cr000108x

2000, Eur. J. Cardio-Thoracic Surg., 17, 587, 10.1016/S1010-7940(00)00373-0

2006, Nat. Protocols, 1, 2753, 10.1038/nprot.2006.430

2010, Tissue Eng. A, 16, 299, 10.1089/ten.tea.2009.0010

2014, PLos One, 9, e99410, 10.1371/journal.pone.0099410

2013, Eur. Polym. J., 49, 780, 10.1016/j.eurpolymj.2012.12.009

2011, Biomacromolecules, 12, 1831, 10.1021/bm200178w

2011, Adv. Mater., 23, H41, 10.1002/adma.201003963

2012, Prog. Polym. Sci., 37, 106, 10.1016/j.progpolymsci.2011.06.003

2014, J. R. Soc. Interface, 11, 20140817, 10.1098/rsif.2014.0817

2011, Soft Matter, 7, 2639, 10.1039/c0sm00996b

2008, J. Mater. Chem., 18, 5717, 10.1039/b807560c

2010, Biofabrication, 2, 032001, 10.1088/1758-5082/2/3/032001

2011, J. Biomed. Mater. Res. B, 98B, 160, 10.1002/jbm.b.31831

2013, MRS Bull., 38, 834, 10.1557/mrs.2013.209

2013, IEEE Trans. Biomed. Eng., 60, 691, 10.1109/TBME.2013.2243912

2016, Biomaterials, 76, 321, 10.1016/j.biomaterials.2015.10.076

2016, Biomaterials, 102, 20, 10.1016/j.biomaterials.2016.06.012

2007, Tissue Eng., 13, 1905, 10.1089/ten.2006.0175

2013, J. Biomed. Mater. Res. A, 101A, 272, 10.1002/jbm.a.34326

2012, Prog. Polym. Sci., 37, 1079, 10.1016/j.progpolymsci.2011.11.007

2015, Trends Biotechnol., 33, 395, 10.1016/j.tibtech.2015.04.005

2014, ACS Nano, 8, 9799, 10.1021/nn503268f

2016, Proc. Natl. Acad. Sci. U. S. A., 113, 2206, 10.1073/pnas.1524510113

2018, Biomaterials, 185, 310, 10.1016/j.biomaterials.2018.09.026

2017, Biofabrication, 9, 044107, 10.1088/1758-5090/aa8dd8

2012, AIChE J., 58, 3242, 10.1002/aic.13704

2012, Phys. Fluids, 24, 082103, 10.1063/1.4742913

2012, J. Rheol., 56, 1109, 10.1122/1.4724331

2011, Phys. Fluids, 23, 127101, 10.1063/1.3663616

1984, IBM J. Res. Develop., 28, 322, 10.1147/rd.283.0322

2009, Langmuir, 25, 2629, 10.1021/la900059m

2012, J. Appl. Phys., 112, 083105, 10.1063/1.4759344

2018, ACS Appl. Mater. Interfaces, 10, 23353, 10.1021/acsami.7b19818

2016, Biofabrication, 8, 035020, 10.1088/1758-5090/8/3/035020

2017, Mater. Sci. Eng. C, 80, 313, 10.1016/j.msec.2017.05.144

2010, J. Manuf. Sci. Eng., 132, 051001, 10.1115/1.4002187

2005, Biomaterials, 26, 93, 10.1016/j.biomaterials.2004.04.011

2005, Tissue Eng., 11, 1658, 10.1089/ten.2005.11.1658

2006, Biomaterials, 27, 3580, 10.1016/j.biomaterials.2006.01.048

2009, J. Biomech. Eng.-Trans. ASME, 131, 035001, 10.1115/1.3002759

2008, Biomaterials, 29, 193, 10.1016/j.biomaterials.2007.09.032

2010, Polymer, 51, 2147, 10.1016/j.polymer.2010.03.038

2007, Science, 318, 208, 10.1126/science.1144212

2014, J. Manuf. Sci. Eng., 136, 061020, 10.1115/1.4028578

2006, Phys. Fluids, 18, 072102, 10.1063/1.2217929

2011, Phys. Fluids, 23, 107101, 10.1063/1.3643269

2017, Langmuir, 33, 5037, 10.1021/acs.langmuir.7b00874

2014, Langmuir, 30, 9130, 10.1021/la501430x

2017, J. Appl. Phys., 121, 124904, 10.1063/1.4978744

2009, J. Appl. Phys., 105, 093111, 10.1063/1.3116724

2000, Appl. Surf. Sci., 154–155, 593, 10.1016/S0169-4332(99)00465-1

2015, J. Micro Nano-Manuf., 3, 011004, 10.1115/1.4029264

2015, Langmuir, 31, 6447, 10.1021/acs.langmuir.5b00919

2016, Langmuir, 32, 3004, 10.1021/acs.langmuir.6b00220

2009, Biomaterials, 30, 6221, 10.1016/j.biomaterials.2009.07.056

2013, Biofabrication, 5, 015002, 10.1088/1758-5082/5/1/015002

2008, Nano Lett., 8, 538, 10.1021/nl072798r

2005, Biosens. Bioelectron., 20, 1638, 10.1016/j.bios.2004.08.047

2000, Science, 289, 879, 10.1126/science.289.5481.879

2004, Biomed. Microdev., 6, 139, 10.1023/B:BMMD.0000031751.67267.9f

2004, Tissue Eng., 10, 483, 10.1089/107632704323061843

2009, J. Appl. Phys., 106, 043106, 10.1063/1.3202388

2010, Acta Biomater., 6, 2494, 10.1016/j.actbio.2009.09.029

2011, Tissue Eng. C, 17, 973, 10.1089/ten.tec.2011.0185

2017, Biomicrofluidics, 11, 034120, 10.1063/1.4985652

2010, Thin Solid Films, 518, 5321, 10.1016/j.tsf.2010.03.082

2012, Appl. Phys. A, 106, 471, 10.1007/s00339-011-6751-z

2013, Biofabrication, 5, 045006, 10.1088/1758-5082/5/4/045006

2011, Biomed. Eng. Online, 10, 19, 10.1186/1475-925X-10-19

2008, Thin Solid Films, 516, 6504, 10.1016/j.tsf.2008.02.043

2007, Appl. Surf. Sci., 253, 7855, 10.1016/j.apsusc.2007.02.097

2009, Appl. Surf. Sci., 255, 5342, 10.1016/j.apsusc.2008.07.200

2009, J. Appl. Phys., 106, 084907, 10.1063/1.3248304

2012, J. Fluid Mech., 709, 341, 10.1017/jfm.2012.337

2011, Appl. Phys. A, 103, 271, 10.1007/s00339-010-6030-4

2003, MRS Bull., 28, 815, 10.1557/mrs2003.230

2004, Phys. Rev. Lett., 93, 034501, 10.1103/PhysRevLett.93.034501

2006, Phys. Fluids, 18, 032106, 10.1063/1.2185111

2010, Annu. Rev. Mater. Res., 40, 395, 10.1146/annurev-matsci-070909-104502

2010, Phys. Fluids, 22, 122003, 10.1063/1.3524533

2013, Annu. Rev. Fluid Mech., 45, 85, 10.1146/annurev-fluid-120710-101148

2010, Nat. Phys., 6, 625, 10.1038/nphys1682

2010, Rheol. Acta, 49, 619, 10.1007/s00397-009-0419-z

2014, J. Manuf. Sci. Eng., 136, 061016, 10.1115/1.4028512

2016, ACS Appl. Mater. Interfaces, 8, 31304, 10.1021/acsami.6b09881

2017, ACS Appl. Mater. Interfaces, 9, 20057, 10.1021/acsami.7b02398

2017, ACS Appl. Mater. Interfaces, 9, 17456, 10.1021/acsami.7b03613

2018, ACS Appl. Mater. Interfaces, 10, 6849, 10.1021/acsami.7b16059

2018, ACS Appl. Mater. Interfaces, 10, 10461, 10.1021/acsami.8b00806

2017, Biomaterials, 112, 264, 10.1016/j.biomaterials.2016.10.026

2015, Biomaterials, 62, 164, 10.1016/j.biomaterials.2015.05.043

2008, Tissue Eng. A, 14, 413, 10.1089/tea.2007.0173

2016, Biofabrication, 8, 032001, 10.1088/1758-5090/8/3/032001

2017, J. Mater. Chem. B, 5, 2941, 10.1039/C7TB00217C

2016, Biofabrication, 8, 045002, 10.1088/1758-5090/8/4/045002

2016, Acta Biomater., 43, 314, 10.1016/j.actbio.2016.07.050

2012, Biofabrication, 4, 035005, 10.1088/1758-5082/4/3/035005

2013, J. Biomed. Mater. Res. A, 101A, 1255, 10.1002/jbm.a.34420

2013, J. Biomech. Eng.-Trans. ASME, 135, 091011, 10.1115/1.4024575

2015, Adv. Funct. Mater., 25, 6205, 10.1002/adfm.201501760

2014, Biofabrication, 6, 024105, 10.1088/1758-5082/6/2/024105

2014, Acta Biomater., 10, 1836, 10.1016/j.actbio.2013.12.005

2014, Acta Biomater., 10, 4323, 10.1016/j.actbio.2014.06.034

2014, Acta Biomater., 10, 630, 10.1016/j.actbio.2013.10.016

2015, Tissue Eng. A, 21, 740, 10.1089/ten.tea.2014.0231

2015, Biomacromolecules, 16, 1489, 10.1021/acs.biomac.5b00188

2015, Biofabrication, 7, 045012, 10.1088/1758-5090/7/4/045012

2013, Biofabrication, 5, 035001, 10.1088/1758-5082/5/3/035001

2014, Biomaterials, 35, 49, 10.1016/j.biomaterials.2013.09.078

2016, Sci. Rep., 6, 29977, 10.1038/srep29977

2016, Biofabrication, 8, 035003, 10.1088/1758-5090/8/3/035003

2018, Adv. Mater., 30, 1704028, 10.1002/adma.201704028

2018, Bio-Des. Manuf., 1, 123, 10.1007/s42242-018-0009-y

2016, Adv. Healthcare Mater., 5, 326, 10.1002/adhm.201500677

2017, Adv. Mater., 29, 1604983, 10.1002/adma.201604983

2015, Biofabrication, 7, 045002, 10.1088/1758-5090/7/4/045002

2014, Adv. Mater., 26, 3124, 10.1002/adma.201305506

2015, Sci. Adv., 1, e1500655, 10.1126/sciadv.1500655

2015, Sci. Adv., 1, e1500758, 10.1126/sciadv.1500758

2016, ACS Biomater. Sci. Eng., 2, 1781, 10.1021/acsbiomaterials.6b00170

2017, MRS Bull., 42, 571, 10.1557/mrs.2017.167

2014, Adv. Mater., 26, 6307, 10.1002/adma.201400334

2014, Biofabrication, 6, 035022, 10.1088/1758-5082/6/3/035022

2012, Adv. Mater., 24, 391, 10.1002/adma.201102800

2010, Biofabrication, 2, 014105, 10.1088/1758-5082/2/1/014105

2013, Biofabrication, 5, 015001, 10.1088/1758-5082/5/1/015001

2010, Tissue Eng. C, 16, 157, 10.1089/ten.tec.2009.0179

2012, Stem Cells Transl. Med., 1, 792, 10.5966/sctm.2012-0088

2014, Mol. Pharm., 11, 2151, 10.1021/mp400573g

2015, Biotechnol. J., 10, 1568, 10.1002/biot.201400635

2012, Biotechnol. Bioeng., 109, 2357, 10.1002/bit.24488

2010, Biomaterials, 31, 7250, 10.1016/j.biomaterials.2010.05.055

2010, Tissue Eng. C, 16, 847, 10.1089/ten.tec.2009.0397

2012, Biotechnol. Bioeng., 109, 1855, 10.1002/bit.24455

2011, Tissue Eng. C, 17, 289, 10.1089/ten.tec.2010.0442

2008, Tissue Eng. A, 14, 127, 10.1089/ten.a.2007.0158

2013, Biofabrication, 5, 015003, 10.1088/1758-5082/5/1/015003

2014, Biofabrication, 6, 024103, 10.1088/1758-5082/6/2/024103

2013, J. Nanotechnol. Eng. Med., 4, 020902, 10.1115/1.4024398

2013, PLos One, 8, e72610, 10.1371/journal.pone.0072610

2012, Tissue Eng. C, 18, 33, 10.1089/ten.tec.2011.0060

2012, Biomaterials, 33, 1782, 10.1016/j.biomaterials.2011.11.003

2004, Tissue Eng., 10, 1566, 10.1089/ten.2004.10.1566

2007, J. Bioact. Compat. Polym., 22, 363, 10.1177/0883911507079451

2006, Tissue Eng. A, 12, 83, 10.1089/ten.2006.12.83

2010, Tissue Eng. A, 16, 2675, 10.1089/ten.tea.2009.0798

2011, Biofabrication, 3, 034112, 10.1088/1758-5082/3/3/034112

2011, Tissue Eng. A, 17, 2113, 10.1089/ten.tea.2011.0019

2015, Adv. Mater., 27, 4034, 10.1002/adma.201570182