Evaluation of an optical energy harvester for SHM application

Rocco Citroni1, Franco Di Paolo1, Patrizia Livreri2
1Department of Electronic Engineering, University of Rome Tor Vergata, Italy
2Department of Engineering, University of Palermo, Italy

Tài liệu tham khảo

Miller, 2009 Kotowsky, 2010 Du, 2011 Prauzek, 2018, Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: a review, Sensors, 18, 2446, 10.3390/s18082446 Abdin, 2013, Solar energy harvesting with the application of nanotechnology, Renew Sustain Energy Rev, 26, 837, 10.1016/j.rser.2013.06.023 Gilbert, 2008, Comparison of energy harvesting systems for wireless sensor networks, Int J Autom Comput, 05, 334, 10.1007/s11633-008-0334-2 Bhatnagar, 2015, Energy harvesting for assistive and mobile applications, Energy Sci Eng, 3, 153, 10.1002/ese3.63 Kim, 2014, Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms, Proc IEEE, 102, 1649, 10.1109/JPROC.2014.2357031 Prasad, 2014, Reincarnation in the ambiance: devices and networks with energy harvesting, IEEE Commun Surv Tutor, 16, 195, 10.1109/SURV.2013.062613.00235 Vullers, 2009, Micropower energy harvesting, Solid-State Electron, 53, 684, 10.1016/j.sse.2008.12.011 Yi, 2015, Solar castalia: solar energy harvesting wireless sensor network simulator, Int J Distrib Sens Netw, 2015, 1, 10.1155/2015/831780 Abbas, 2014, Solar energy harvesting and management in wireless sensor networks, Int J Distrib Sens Netw, 2014, 1 https://www.energy.gov/eere/solar/multijunction-iii-v-photovoltaics-research. Moddel, 2013 Dagenais M, Choi K, Yesilkoy F, Chryssis AN, Peckerar MC. Solar spectrum rectification using nano-antennas and tunneling diodes. In: Proc. of SPIE, vol. 7605 76050E, p. 1–12. Svetlana, 2016, J Opt, 18, 073004, 10.1088/2040-8978/18/7/073004 http://tikalon.com/blog/blog.php?article=2011/nantenna. Ilyas, 2005 http://edge.rit.edu/edge/P08208/public/Controls_Files/MICaZ-DataSheet.pdf. Lajara, 2010, Power consumption analysis of operating systems for wireless sensor networks, Sensors, 10, 5809, 10.3390/s100605809 Ameziane, 2015 Briones, 2013, Conversion efficiency of broadband rectennas for solar energy harvesting applications, Opt Exp, 21, 412, 10.1364/OE.21.00A412 Bhatt K, Shriwastava S, Kumar S, Tripathi S, Tripathi CC. Terahertz detectors (THzDs): bridging the gap for energy harvesting, terahertz spectroscopy – a cutting edge technology, Jamal Uddin; 2017. Citroni, 2018, Replacing noble metals with alternative metals in MID-IR frequency: a theoretical approach, AIP Conf Proc, 1990, 020004, 10.1063/1.5047758 Biagioni, 2012, Nanoantennas for visible and infrared radiation, Rep Prog Phys, 75, 024402, 10.1088/0034-4885/75/2/024402 Nazarov, 2014 Uddin, 2017 Khan, 2017, Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications, Microelectron Eng, 181, 34, 10.1016/j.mee.2017.07.003 Krishnan, 2008, Design and development of batch fabricatable metal–insulator–metal diode and microstrip slot antenna as rectenna elements, Sens Actuat A, 142, 1, 10.1016/j.sna.2007.04.021 ICT-Energy - Nanoscale energy management concepts towards zero-power information and communication technology. Intech Open Science; 2014. Sabaawi, 2015 Zhuang, 2015, High frequency Ni-NiO-Ag metal-insulator-metal tunnel diodes fabricated via anodic aluminum oxide templates, ECS Solid State Letters, 4, P39, 10.1149/2.0021505ssl Hashem, 2013, Theoretical study of metal-insulator-metal tunneling diode figures of merit, IEEE J Quant Electron, 49, 1, 10.1109/JQE.2012.2228166 Chin, 2013, Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system, J. Vac. Sci. Technol. B, 31, 1, 10.1116/1.4818313 Periasamy, 2011, Fabrication and characterization of MIM diodes based on Nb/Nb 2 O 5 via a rapid screening technique, Adv. Mater., 23, 1, 10.1002/adma.201101115 Krishnan, 2008, Effects of dielectric thickness and contact area on current–voltage characteristics of thin film metal–insulator–metal diodes, Thin Solid Films, 516, 1, 10.1016/j.tsf.2007.08.067 Chiu, 2014, A review on conduction mechanisms in dielectric films, Adv Mater Sci Eng, 2014, 1 Mlinar, 2013, Engineered nanomaterials for solar energy conversion, Nanotechnology, 24, 042001, 10.1088/0957-4484/24/4/042001 Hashem, 2014, Dipole nantennas terminated by traveling wave rectifiers for ambient thermal energy harvesting, IEEE Trans Nanotechnol, 13, 1, 10.1109/TNANO.2014.2320513 Shanawani, 2017, THz rectennas and their design rules, Electronics, 6, 1 Citroni, 2019, A novel energy harvester for powering small UAVs: performance analysis model validation and flight results, Sensors, 19, 1771, 10.3390/s19081771 Krasnok, 2013, Optical nanoantennas, Physics - Uspekhi, 56, 1, 10.3367/UFNe.0183.201306a.0561 Brongersma, 2008, Engineering optical nanoantennas, Nat Photo, 2, 1, 10.1038/nphoton.2008.60 Zhao, 2013, Optical nanoantennas and their applications, 58 Bharadwaj, 2009, Optical antennas, Adv Opt Photo, 1, 1, 10.1364/AOP.1.000438 Alda, 2005, Optical antennas for nano-photonic applications, Nanotechnology, 16, 1, 10.1088/0957-4484/16/5/017 Silva, 2016, Nantennas for energy harvesting, 1 Alù, 2008, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, PRL, 101, 043901, 10.1103/PhysRevLett.101.043901 Saad-Bin-Alam, 2015, Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications, IEEE Photo Technol Lett, 27, 1092, 10.1109/LPT.2015.2407867 Vandenbosch, 2012, Upper bounds for the solar energy harvesting efficiency of nano-antennas, Nano Energy, 1, 494, 10.1016/j.nanoen.2012.03.002 Chekini, 2016, A novel plasmonic nanoantenna structure for solar energy harvesting, 20 Gadalla, 2014, Design optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification, Sci Rep, 4, 1, 10.1038/srep04270 LTC3108 Datasheet. https://www.analog.com/en/products/ltc3108.html. Kordetoodeshki, 2019, An ultra-low power, low voltage DC-DC converter circuit for energy harvesting applications, AEU -Int J Electron Commun, 98, 8, 10.1016/j.aeue.2018.10.029 Cheraghi Shirazi, 2018, Self-start-up fully integrated DC-DC step-up converter using body biasing technique for energy harvesting applications, Int J Electron Commun (AEÜ), 95, 24, 10.1016/j.aeue.2018.07.033 Ashraf, 2014, High efficiency boost converter with variable output voltage using a self-reference comparator, Int J Electron Commun (AEÜ), 68, 1058, 10.1016/j.aeue.2014.05.011 Di Garbo, 2017, Optimal matching between optical rectennas and harvester circuits, 1