Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts
Tóm tắt
Alzheimer’s disease affects nearly 36.5 million people worldwide, and acetylcholinesterase inhibition is currently considered the main therapeutic strategy against it. Seaweed biodiversity in Brazil represents one of the most important sources of biologically active compounds for applications in phytotherapy. Accordingly, this study aimed to carry out a quantitative and qualitative assessment of Hypnea musciformis (Wulfen) J.V. Lamouroux, Ochtodes secundiramea (Montagne) MA. Howe, and Pterocladiella capillacea (S.G. Gmelin) Santelices & Hommersand (Rhodophyta) in order to determine the AChE effects from their extracts. As a matter of fact, the O. secundiramea extract showed 48% acetylcholinesterase inhibition at 400 (ig/ml. The chemical composition of the bioactive fraction was determined by gas chromatography-mass spectrometry (GC-MS); this fraction is solely composed of halogenated monoterpenes, therefore allowing assignment of acetylcholinesterase inhibition activity to them.
Tài liệu tham khảo
Alzheimer’s Association, 2014. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10, 1–80.
Amsler, C.D., 2008. Algal Chemical Ecology. Springer, Berlin.
Barahona, L.F., Rorrer, G.L., 2003. Isolation of halogenated monoterpenes from bioreactor-cultured microplantlets of the macrophytic red algae Ochtodes secundiramea and Portieria hornemannii. J. Nat. Prod. 66, 743–751.
Barbosa-Filho, J.M., Medeiros, K.C.P., Diniz, M.F., Batista, L.M., Athayde-Filho, P.F., Silva, M.S., Cunha, E.V.L., Almeida, J.R.G.S., Quintans-Júnior, L.J., 2006. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 16, 258–285.
Baweja, P., Sahoo, D., García-Jiménez, P., Robaina, P.R., 2009. Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol. Res. 57, 45–58.
Burreson, B.J., Woolard, F.X., Moore, R.M., 1975. Evidence forthe biogenesis of halogenated myrcenes from the red alga Chondrococcus hornemanii. Chem. Lett. 4, 1111–1114.
Cardozo, K.H.M., Carvalho, V.M., Ernani Pinto, E., Colepicolo, P., 2006. Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20, 253–258.
Coll, J.C., Wright, A.D., 1987. Tropical marine algae. I. New halogenated monoterpenes from Chondrococcushornemannii(Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust.J. Chem. 40, 1893–1900.
Coll, J.C., Skelton, B.W., White, A.H., Wright, A.D., 1988. Tropical marine algae. II. The structure determination of new halogenated monoterpenes from Plocamium hamatum (Rhodophyta, Gigartinales, Plocamiaceae). Aust.J. Chem. 41, 1743–1753.
Dagani, M.J., Barda, H.J., Benya, T.J., Sanders, D.C., 2014. Organic bromine compounds. In: Ullmann’s Fine Chemicals. Wiley-VCH Verlag GmbH & Co, Weinhein, Germany.
Ellman, G.L., Courtney, K.D., Andres Jr., V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95.
Hillwig, M.L., Liu, X., 2014. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 921–923.
Ferreira, L.D.S., Turatti, I.C.C., Lopes, N.P., Guaratini, T., Colepicolo, P., Oliveira, E.C., Garla, R.C., Pohlit, A.M., Zucchi, O.L.A.D., 2012. Apolar compounds in seaweeds from Fernando de Noronha archipelago (Northeastern Coast of Brazil). Int. J. Anal. Chem., https://doi.org/10.1155/2012/431954.
Gerwick, W.H., 1984. 2-Chloro-1, 6 (S*), 8-tribromo-3-(8) (Z)-ochtodene: a metabolite of the tropical red seaweed Ochtodes secundiramea. Phytochemistry 23, 1323–1324.
Gressler, V., Colepicolo, P., Pinto, E., 2009. Useful strategies for algal volatile analysis. Curr. Anal. Chem. 5, 271–292.
Gressler, V., Fujii, M., Martins, A.P., Colepicolo, P., Mancini, J., Pinto, E., 2011a. Biochemical composition of two red seaweed species grown on the Brazilian coast. J. Sci. Food Agric. 91, 1687–1692.
Gressler, V., Stein, E.M., Dörr, F., Fujii, M.T., Colepicolo, P., Pinto, E., 2011b. Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Rev. Bras. Farmacogn. 21, 248–254.
Kartal, M., Orhan, I., Abu-Asaker, M., Senol, F.S., Atici, T., Sener, B., 2009. Antioxidant and anticholinesterase assets and liquid chromatography-mass spectrometry preface of various fresh-water and marine macroalgae. Pharmacogn. Mag. 5, 291–297.
Keane, S., Ryan, M.F., 1999. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 29, 1097–1104.
Koroch, A.R., Juliani, H.R., Zygadlo, J.A., 2007. Bioactivity of essential oils and their components. Flav. Fragr. Chem. 87, 547–553.
Machado, L.P., Carvalho, L.R., Young, M.C.M., Zambotti-Villela, L., Colepicolo, P., Andreguetti, D.X., Yokoya, N.S., 2014a. Comparative chemical analysis and antifungal activity of Ochtodes secundiramea (Rhodophyta) extracts obtained using different biomass processing methods. J. Appl. Phycol. 26, 2029–2035.
Machado, L.P., Matsumoto, S.T., Jamal, C.M., Silva, M.B., Centeno, D.C., Colepicolo, P., Carvalho, L.R., Yokoya, N.S., 2014b. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi. J. Sci. Food. Agric. 94, 1739–1744.
Maliakal, S., Cheney, C., Rorrer, G., 2001. Halogenated monoterpene production in regenerated plantlet cultures ofOchtodessecundiramea (Rhodophyta, Cryptonemiales). J. Phycol. 37, 1010–1019.
Marston, A., Kissling, J., Hostettmann, K., 2002. A rapid TLC bioautographic method forthe detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Analysis 13, 51–54.
McConnell, O.J., Fenical, W., 1978. Ochtodene andochtodiol: novel polyhalogenated cyclic monoterpenes from the red seaweed Ochtodes secundiramea. J. Org. Chem. 43, 4238–4241.
McGleenon, B.M., Dynan, K.B., Passmore, A.P., 1999. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol. 48, 471–480.
Mesko, M.F., Picoloto, R.S., Ferreira, L.R., Costa, V.C., Pereira, C.M.P., Colepicolo, P., Muller, E.I., Flores, E.M.M., 2015. Ultraviolet radiation combined with microwave-assisted wet digestion of Antarctic seaweeds for further determination of toxic elements by ICP-MS. J. Anal. At. Spectrom. 30, 260–266.
Moore, B.S., 2006. Biosynthesis of marine natural products: macroorganisms (Part B). Nat. Prod. Rep. 23, 615–629.
Nair, V.P., Hunter, J.M., 2004. Anticholinesterases and anticholinergic drugs. Cont. Edu. Anaest. Crit. Care. Pain 4, 164–168.
Natarajan, S., Shanmugiahthevar, K.P., Kasi, P.D., 2009. Cholinesterase inhibitors from Sargassum and Gracilariagracilis: seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Nat. Prod. Res. 23, 355–369.
Naylor, S., Hanke, F.J., Manes, L.V., Crews, P., 1983. Chemical and biological aspects of marine monoterpenes. Fortschritte der Chemie Organischer Naturstoffe/Prog. Chem. Org. Nat. Prod. 44, 189–241.
Pangestuti, R., Kim, S.K., 2011. Neuroprotective effects of marine algae. Mar. Drugs 9, 803–818.
Paul, V.J., McConnell, O.J., Fenical, W., 1980. Cyclic monoterpenoid feeding deterrents from the red marine alga Ochtodes crockeri. J. Org. Chem. 45, 3401–3407.
Polzin, J.P., Rorrer, G.L., 2003. Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion. Biotechnol. Bioeng. 82, 415–428.
Polzin, J.J., Rorrer, G.L., Cheney, D.P., 2003. Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea. Biomol. Eng. 20, 205–215.
Rhee, I.K., Meent, M.V., Ingkaninan, K., Verpoorte, R., Okada, M., Marimo, M., 1997. Studies on inhibitory activity against acetyl cholinesterase of new bisbenzylisoquinoline alkaloid and its related compounds. Heterocycles 45, 2253–2260.
Rhee, I.K., Meent, M.V., Ingkaninan, K., Verpoorte, R., 2001. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using sílica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A 915, 217–223.
Smit, A.J., 2004. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16, 245–262.
Stirk, W., Reinecke, D., van Staden, J., 2007. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol. 19, 271–276.
Suganthy, N., Pandian, S.K., Devi, K.P., 2010. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar marine biosphere reserve): cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci. Lett. 468, 216–219.
Torres, F.A.E., Passalacqua, T.G., Velasquez, A.M.A., Souza, R.A., Colepicolo, P., Graminha, M.A.S., 2014. New drugs with antiprotozoal activity from marine algae: a review. Rev. Bras. Farmacogn. 24, 265–276.
Vinutha, B., Prashanth, D., Salma, K., Sreeja, S.L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363.
Wimoa, A., Winblada, B., Jönssonb, L., Bond, J., Princee, M., Winblad, B., 2013. The worldwide economic impact of dementia 2010. Alzheimer’s Dement. 9, 1–11.
Wimoa, A., Winblada, B., Jönssonb, L., 2007. An estimate of the total worldwide societal costs of dementia in 2005. Alzheimer’s Dement. 3, 81–91.
Yokoya, N.S., Yoneshigue-Valentin, Y., 2011. Micropropagation as a tool for sustainable utilization and conservation of populations of Rhodophyta. Rev. Bras. Farmacogn. 21, 334–339.
Yoon, N., Chung, H., Kim, H., Choi, J., 2008. Acetyl and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 74, 200–207.