Evaluation of a nnU-Net type automated clinical volumetric tumor segmentation tool for diffuse low-grade glioma follow-up

Margaux Verdier1, Jeremy Deverdun1, Nicolas Menjot de Champfleur1,2,3, Hugues Duffau4,5, Philippe Lam2, Thomas Dos Santos2, Thomas Troalen6, Bénédicte Maréchal7,8, Till Huelnhagen7,8, Emmanuelle Le Bars1,2
1I2FH, Institut d'Imagerie Fonctionnelle Humaine, Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
2Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
3Laboratoire Charles Coulomb, University of Montpellier, France
4Department of Neurosurgery, Montpellier University Medical Center, Montpellier, France
5Institute for Neuroscience of Montpellier, INSERM U1051, Montpellier University Medical Center, Montpellier, France
6Siemens Healthcare SAS, Saint-Denis, France
7Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
8LTS5, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Tài liệu tham khảo

Goodenberger, 2012, Genetics of adult glioma, Cancer Genet, 205, 613, 10.1016/j.cancergen.2012.10.009 Figarella-Branger, 2021, The 2021 WHO classification of tumours of the central nervous system, Ann Pathol, S0242-6498, 00251 Duffau, 2013, The ‘onco-functional balance’ in surgery for diffuse low-grade glioma: integrating the extent of resection with quality of life, Acta Neurochir (Wien), 155, 951, 10.1007/s00701-013-1653-9 Gui, 2019, Radiology reporting of low-grade glioma growth underestimates tumor expansion, Acta Neurochir (Wien), 161, 569, 10.1007/s00701-018-03783-3 Pallud, 2012, Quantitative morphological magnetic resonance imaging follow-up of low-grade glioma: a plea for systematic measurement of growth rates, Neurosurgery, 71, 729, 10.1227/NEU.0b013e31826213de Mariani, 2004, The impact of tumour volume and surgery on the outcome of adults with supratentorial WHO grade II astrocytomas and oligoastrocytomas, Acta Neurochir (Wien), 146, 441, 10.1007/s00701-004-0222-7 Mandonnet, 2003, Continuous growth of mean tumor diameter in a subset of grade II gliomas, Ann Neurol, 53, 524, 10.1002/ana.10528 Perrillat-Mercerot, 2021, Using mathematics in MRI data management for glioma assesment, J Neuroradiol, 48, 282, 10.1016/j.neurad.2019.11.004 Badrigilan, 2021, Deep learning approaches for automated classification and segmentation of head and neck cancers and brain tumors in magnetic resonance images: a meta-analysis study, Int J Comput Assist Radiol Surg, 16, 529, 10.1007/s11548-021-02326-z Kamnitsas, 2017, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Med. Image Anal., 36, 61, 10.1016/j.media.2016.10.004 Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. ArXiv14114038 Cs (2015). Hussain, 2018, Segmentation of glioma tumors in brain using deep convolutional neural network, Neurocomputing, 282, 248, 10.1016/j.neucom.2017.12.032 Cui, 2018, Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network, J Healthc Eng, 2018, 10.1155/2018/4940593 Li, 2017, Low-grade glioma segmentation based on CNN with fully connected CRF, J Healthc Eng, 2017, 10.1155/2017/9283480 Yang, 2021, Evaluation of magnetic resonance image segmentation in brain low-grade gliomas using support vector machine and convolutional neural network, Quant Imaging Med Surg, 11, 300, 10.21037/qims-20-783 Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. ArXiv150504597 Cs (2015). Yan, 2021, Multi-scale brain tumor segmentation combined with deep supervision, Int. J. Comput. Assist. Radiol. Surg. McKinley, 2018, Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation Naser, 2020, Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images, Comput Biol Med, 121, 10.1016/j.compbiomed.2020.103758 Antonelli, M. et al. The medical segmentation decathlon. Preprint at https://doi.org/10.48550/arXiv.2106.05735 (2021) Mehta, R. et al. QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation - analysis of ranking scores and benchmarking results. Preprint at https://doi.org/10.48550/arXiv.2112.10074 (2022) Isensee, F., Jaeger, P.F., Full, P.M., et al. nnU-Net for Brain Tumor Segmentation. ArXiv201100848 Cs Eess (2020). Isensee, 2021, nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation, Nat Methods, 18, 203, 10.1038/s41592-020-01008-z Wang, 2022, Relax and focus on brain tumor segmentation, Med Image Anal, 75, 10.1016/j.media.2021.102259 Duffau, 2018, Diffuse low-grade glioma, oncological outcome and quality of life: a surgical perspective, Curr Opin Oncol, 30, 383, 10.1097/CCO.0000000000000483 NITRC: MRIcron: Tool/Resource Info. https://www.nitrc.org/projects/mricron. Brasil Caseiras, 2009, Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient, Radiology, 253, 505, 10.1148/radiol.2532081623 Lin, 1989, A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255, 10.2307/2532051 Bland, 1986, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet Lond Engl, 1, 307, 10.1016/S0140-6736(86)90837-8 Pallud, 2013, Velocity of tumor spontaneous expansion predicts long-term outcomes for diffuse low-grade gliomas, Neuro-Oncol, 15, 595, 10.1093/neuonc/nos331 Bø, 2017, Intra-rater variability in low-grade glioma segmentation, J Neurooncol, 131, 393, 10.1007/s11060-016-2312-9 Visser, 2019, Inter-rater agreement in glioma segmentations on longitudinal MRI, NeuroImage Clin, 22, 10.1016/j.nicl.2019.101727