Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá mô hình về ảnh hưởng của tương tác giữa các chất nền đến động học của quá trình dehalogen hóa khử
Tóm tắt
Nghiên cứu trình bày tác động của các chất nền cho electron nguyên thủy và chất nhận electron lên động học của quá trình phân hủy sinh học TCA trong các phản ứng sinh học tạo sulfat và tạo metan. Trong số các chất nền cho electron kỵ khí thông dụng được thử nghiệm, chỉ có formate kích thích tỷ lệ phân hủy sinh học TCA trong cả hai phản ứng. Trong phản ứng tạo sulfat, glucose cũng kích thích tỷ lệ phản ứng. Tác động của formate và sulfat lên động học phân hủy sinh học TCA được phân tích bằng cách sử dụng mô hình cho các tác động của chất nền nguyên thủy đến quá trình dehalogen hóa khử. Mặc dù có một số khác biệt giữa mô hình và dữ liệu là rõ ràng, nhưng các phản ứng quan sát được của tỷ lệ phân hủy TCA đối với formate và sulfat nhất quán với mô hình. Formate kích thích tỷ lệ phân hủy TCA trong cả hai phản ứng trên toàn bộ dải nồng độ TCA được nghiên cứu (từ 50 μg TCA/L đến 100 mg TCA/L). Tác động lớn nhất xảy ra ở nồng độ TCA cao, nơi động học dehalogen hóa thuộc bậc không. Sulfat ức chế tỷ lệ phân hủy TCA bậc một trong phản ứng tạo sulfat, nhưng không xảy ra trong phản ứng tạo metan. Molybdate, một chất ức chế chọn lọc quá trình khử sulfat, kích thích tỷ lệ loại bỏ TCA trong phản ứng tạo sulfat, nhưng không có tác động trong phản ứng tạo metan.
Từ khóa
Tài liệu tham khảo
Atkinson, B & Davies, IJ (1974) The overall rate of substrate uptake (reaction) by microbial films. Part I—A biological rate equation. Trans. Inst. Chem. Engin. 52: 248–259
Bouwer, EJ & McCarty, PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294
Bouwer, EJ & Wright, JP (1988) Transformation of trace halogenated aliphatics in anoxic biofilm columns. J. Contam. Hydrol. 2: 155–169
Cornish-Bowden, A (1979) Fundamentals of Enzyme Kinetics. Butterworth and Co., Ltd., London
Criddle, CS, DeWitt, JT, Grbić-Galić, D & McCarty, PL (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246
Criddle, CS & McCarty, PL (1991) Electrolytic model system for reductive dehalogenation in aqueous environments. Environ. Sci. Technol. 25: 973–978
Cseh, T, Sanschagrin, S, Hawari, J & Samson, R (1989) Adsorption-desorption characteristics of polychlorinated biphenyls on various polymers commonly found in laboratories. Appl. Environ. Microbiol. 55: 3150–3154
Dang, JS, Harvey, DM, Jabbagy, A & Grady, CPLJr (1989) Evaluation of biodegradation kinetics with respirometric data. Res. J. Water Pollut. Control Fed. 61: 1711–1721
DeWeerd, KA & Suflita, JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei. Appl. Environ. Microbiol. 56: 2999–3005
DeWeerd, KA, Concannon, F & Suflita, JM (1991) Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl. Environ. Microbiol. 57: 1929–1934
Dolfing, J (1988) Acetogenesis. In: Zehnder, AJB (Ed.) Biology of Anaerobic Microorganisms (pp. 417–468). John Wiley & Sons, Inc., New York
Egli, C, Scholtz, R, Cook, AM & Leisinger, T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Let. 43: 257–261
Egli, C, Tschan, T, Scholtz, R, Cook, AM & Leisinger, T (1988) Transformation of CCl4 to CH2Cl2 and CO2 by Acetobacterium woodii. App. Environ. Microbiol. 54: 2819–2824
Egli, C, Stromeyer, S, Cook, AM & Leisinger, T (1990) Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol. Letters 68: 207–212
Ensley, BD (1991) Biochemical diversity of trichloroethylene metabolism. Ann. Rev. Microbiol. 45: 283–299
Fathepure, BZ & Boyd, SA (1988a) Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl. Environ. Microbiol. 54: 2976–2980
Fathepure, BZ (1988b) Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol. Let. 49: 149–156
Freedman, DL & Gossett, JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151
Gälli, R & McCarty, PL (1989a) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55: 837–844
Gälli, R (1989b) Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB. Appl. Environ. Microbiol. 55: 845–851
Gantzer, CJ, Rittmann, BE & Herricks, EE (1988) Mass transfort to streambed biofilms. Water Research 22: 709–722
Gibson, SA & Suflita, JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer. Stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832
Goldman, P (1972) Enzymology of carbon-halogen bonds. In: The degradation of synthetic organic molecules in the biosphere (pp. 147–165). National Academy of Sciences, Washington, DC
Goldman, P, Milne, GWA & Keister, DB (1968) Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. J. Biol. Chem. 243: 428–434.
Grady, CPLJr, Dang, JS, Harvey, DM, Jabbagy, A & Wang, X-L (1989) Determination of biodegradation kinetics through use of electrolytic respirometry. Water Sci. Technol. 21: 957–968
Groenewegen, PEJ, Driessen, AJM, Konings, WN & deBont, JAM (1990) Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J. Bacteriol. 172: 419–423
Henderson, JE, Peyton, GR & Glaze, WH (1976) A convenient liquid-liquid extraction method for the determination of halomethanes in water at the parts-per-billion level. In: Keith, LH (Ed.) Identification and Analysis of Organic Pollutants in Water (pp. 105–111). Ann. Arbor Science Publishers, Inc., Ann Arbor, MI
Holliger, C, Schraa, G, Stams, AJM & Zehnder, AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59: 2991–2997
Janssen, DB, Scheper, A, Dijkhuizen, L & Witholt, B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677
Janssen, DB & Witholt, B (1992) Aerobic and anaerobic degradation of halogenated aliphatics. In: Sigel, H & Sigel, A (Eds) Metal Ions in Biological Systems, Vol. 28 (pp. 299–327). Marcel Dekker, New York
Janssen, DB, Pries, F & van derPloeg, JR (1994) Genetics and biochemistry of dehalogenating enzymes. Ann. Rev. Microbiol. 48: 163–191
Jones, WJ, NagleJr, DP & Whitman, WB (1987) Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51: 135–177
Kohler-Staub, D & Leisinger, T (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162: 676–681
Krone, UE, Laufer, K, Thauer, RK & Hogenkamp, HPC (1989) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28: 10,061–10,065
Krone, UE, Thauer, RK, Hogenkamp, HPC & Steinbach, K (1991) Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30: 2713–2719
Lage, GB, Parsons, FZ, Nasser, RS & Lorenzo, PA (1986) Sequential dehalogenation of chlorinated ethenes. Environ. Sci. Technol. 20: 96–99
Lage, GB, Parsons, FZ & Nasser, RS (1987) Kinetics of the depletion of TCE. Environ. Sci. Technol. 21: 366–370
Lam, T & Vilker, VL (1987) Biodehalogenation of bromotrichloroethane and 1,2-dibromo-3-chloropropane by Pseudomonas putida PpG-786. Biotechnol. Bioeng. 29: 151–159
Mikesell, MD & Boyd, SA (1990) Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56: 1198–1201
Morrison, RT & Boyd, RN (1973) Organic Chemistry. Allyn & Bacon, Inc., Boston, MA
Mosey, FE (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15: 209–232
Oremland, RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder, AJB (Ed.) Biology of Anaerobic Microorganisms (pp. 641–705). John Wiley & Sons, Inc., New York
Oremland, RS & Capone, DG (1988) Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. Adv. Microbial Ecology 10: 285–383
Parsons, F & Lage, GB (1985) Chlorinated organics in simulated groundwater environments. J. Amer. Water Works Assn. 77: 56–59
Rittmann, BE & McCarty, PL (1981) Substrate flux into biofilms of any thickness. J. Environ. Eng. (ASCE) 107: 831–848
Rittmann, BE, Crawford, LA, Tuck, CK & Namkung, E (1986) In situ determination of kinetic parameters for biofilms. Isolation and characterization of oligotrophic biofilms. Biotechnol. Bioeng. 28: 1753–1760
Sáez, PB & Rittmann, BE (1992) Model-parameter estimation using least squares. Water Research 26: 789–796
Scholz-Muramatsu, H, Szewzyk, R, Szewzyk, U & Gaiser, S (1990) Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiol. Let. 66: 81–86
Semprini, L, Hopkins, GD, McCarty, PL & Roberts, PV (1992) In situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ. Sci. Technol. 26: 2454–2461
Stanley, TJ, WardIII, WJ & Alger, MM (1989) CH2Cl2 permeation in polycarbonate using a 14C-tracer. Ind. Eng. Chem. Res. 28: 1494–1497
Stromeyer, SA, Stumpf, K, Cook, AM & Leisinger, T (1992) Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: Separation of dechlorinative activities in cell extracts and roles for vitamin B12 and other factors. Biodegradation 3: 113–123
Suidan, MT, Rittmann, BE & Traegner, UK (1987) Criteria establishing biofilm-kinetic types. Water Research 21: 491–498
vanGenuchten, MT (1982) Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J. Hydrol. 49: 213–233
Vogel, TM & McCarty, PL (1985) Biotransformation of PCE to TCE, DCE, VC, and CO2 under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080–1083
Vogel, TM & McCarty, PL (1987) Abiotic and biotic transformations of 1,1,1-TCA under methanogenic conditions. Environ. Sci. Technol. 21: 1208–1213
Vogel, TM, Criddle, CS & McCarty, PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736
Wackett, L, Logan, MSP, Blocki, FA & Bao-li, C (1992) A mechanistic perspective on bacterial metabolism of chlorinated methanes. Biodegradation 3: 19–36
Wade, RS & Castro, CE (1973) Oxidation of iron(II) porphyrins by alkyl halides. J. Amer. Chem. Soc. 95: 226–230
Widdel, F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder, AJB (Ed.) Biology of Anserobic Microorganisms (pp. 468–585). John Wiley & Sons, Inc., New York
Wolin, MJ (1982) Hydrogen transfer in microbial communities. In: Bull, AT & Slater, JH (Eds) Microbial Interactions and Communities, Vol. 1 (pp. 323–356) Academic Press, New York
Wrenn BA (1992) Substrate interactions during the anaerobic biodegradation of 1,1,1-trichloroethane. Ph.D. Thesis, Dept. of Civil Engr., University of Illinois, Urbana, IL
Wrenn BA & Rittmann BE (in press) A model for the effects of primary substrates on reductive dehalogenation kinetics. Biodegradation
Zeikus, JG (1980) Microbial populations in digesters. In: Stafford, DA, Wheatley, BI & Hughes, DE (Eds) Anaerobic Digestion (pp. 61–87) Applied Science Publishers, Ltd., London
Zeikus JG (1983) Metabolic communications between biodegradative populations in nature. In: Slater JH, Whittenbury R & Wimpenny JWT (Eds) Microbes in Their Natural Environments (pp. 423–461) Cambridge University Press
Zeikus, JG, Kerby, R & Krzycki, JA (1985) Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227: 1167–1173
