Evaluation of a hand-held far-ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens

Michelle M. Nerandzic1, Jennifer L. Cadnum1, Kevin Eckart1, Curtis J. Donskey2
1Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
2Geriatric Research, Education and Clinical Center 1110 (W), Cleveland VA Medical Center, 10701 East Blvd., Cleveland, OH, 44106, USA

Tóm tắt

Abstract Background Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe and rapid. The Sterilray™ Disinfection Wand device is a hand-held room decontamination technology that utilizes far-ultraviolet radiation (185-230 nm) to kill pathogens. Methods We examined the efficacy of disinfection using the Sterilray device in the laboratory, in rooms of hospitalized patients, and on surfaces outside of patient rooms (i.e. keyboards and portable medical equipment). Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) were collected from commonly-touched surfaces before and after use of the Sterilray device. Results On inoculated surfaces in the laboratory, application of the Sterilray device at a radiant dose of 100 mJ/cm2 for ~ 5 seconds consistently reduced recovery of C. difficile spores by 4.4 CFU log10, MRSA by 5.4 log10CFU and of VRE by 6.9 log10CFU. A >3 log10 reduction of MRSA and VRE was achieved in ~2 seconds at a lower radiant dose, but killing of C. difficile spores was significantly reduced. On keyboards and portable medical equipment that were inoculated with C. difficile spores, application of the Sterilray device at a radiant dose of 100 mJ/cm2 for ~ 5 seconds reduced contamination by 3.2 log10CFU. However, the presence of organic material reduced the lethal effect of the far-UV radiation. In hospital rooms that were not pre-cleaned, disinfection with the Sterilray device significantly reduced the frequency of positive C. difficile and MRSA cultures (P =0.007). Conclusions The Sterilray™ Disinfection Wand is a novel environmental disinfection technology that rapidly kills C. difficile spores and other healthcare-associated pathogens on surfaces. However, the presence of organic matter reduces the efficacy of far-UV radiation, possibly explaining the more modest results observed on surfaces in hospital rooms that were not pre-cleaned.

Từ khóa


Tài liệu tham khảo

Goodman ER, Platt R, Bass R, Onderdonk AB, Yokoe DS, Huang SS: Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol. 2008, 29: 593-599. 10.1086/588566.

Boyce JM, Pittet D: Guideline for hand hygiene in health-care settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect Control Hosp Epidemiol. 2002, 23 (Suppl): S3-S40.

Bhalla A, Pultz NJ, Gries DM, Ray AJ, Eckstein EC, Aron DC, Donskey CJ: Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol. 2004, 25: 164-167. 10.1086/502369.

Boyce JM, Potter-Bynoe G, Chenevert C, King T: Environmental contamination due to methicillin-resistant Staphylococcus aureus (MRSA): possible infection control implications. Infect Control Hosp Epidemiol. 1997, 18: 622-627. 10.1086/647686.

Eckstein BC, Adams DA, Eckstein EC, Rao A, Sethi AK, Yadavalli GK, Donskey CJ: Reduction of Clostridium difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods. BMC Infect Dis. 2007, 7: 61-10.1186/1471-2334-7-61.

Hayden MK, Bonten JM, Blom DW, Lyle EA, van de Vijver D, Weinstein RA: Reduction in acquisition of vancomycin-resistant Enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006, 42: 1552-60. 10.1086/503845.

Dumford DM, Nerandzic MM, Eckstein BC, Donskey CJ: What is on that keyboard? Detecting hidden environmental reservoirs of Clostridium difficile during an outbreak associated with North American pulsed-field gel electrophoresis type 1 strains. Am J Infect Control. 2009, 37: 15-9. 10.1016/j.ajic.2008.07.009.

Gerding DN, Muto CA, Owens RC: Measures to control and prevent Clostridium difficile infection. Clin Infect Dis. 2008, 46: 43-9. 10.1086/521861.

Hacek DM, Ogle AM, Fisher A, Robicsek A, Peterson LR: Significant impact of terminal room cleaning with bleach on reducing nosocomial Clostridium difficile. Am J Infect Control. 2010, 38: 350-3. 10.1016/j.ajic.2009.11.003.

Carling PC, Parry MF, Bruno-Murtha LA, Dick B: Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010, 38: 1212-4. 10.1097/CCM.0b013e3181d1ab3a.

Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ: Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis. 2010, 10: 197-10.1186/1471-2334-10-197.

Conner-Kerr TA, Sullivan PK, Gaillard J, Jones RM: The effects of ultraviolet radiation on antibiotic-resistant bacteria in vitro. Ostomy Wound Manage. 1998, 44: 50-6.

Setlow P: Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006, 101: 514-25. 10.1111/j.1365-2672.2005.02736.x.

Owens MU, Deal DR, Shoemaker MO, Knudson GB, Meszaros JE, Deal JL: High-dose ultraviolet C light inactivates spores of Bacillus subtilis var. niger and Bacillus anthracis Sterne on non-reflective surfaces. Appl Biosafety. 2005, 10: 240-247.

Becker MM, Wang Z: Origin of ultraviolet damage in DNA. J Mol Biol. 1989, 210: 429-38. 10.1016/0022-2836(89)90120-4.

Glendenin LE: Determination of the energy of beta particles and photons by absorption. Nucleonics. 1948, 2: 12-32.

Takebe H, Jagger J: Action spectrum for growth delay induced in Escherichia coli B/r by far-ultraviolet radiation. J Bacteriol. 1969, 98: 677-82.

Duncan CL, Strong DH: Improved medium for sporulation of Clostridium perfringens. Appl Microbiol. 1968, 16: 82-9.

Nerandzic MM, Donskey CJ: Effective and reduced-cost modified selective medium for isolation of Clostridium difficile. J Clin Microbiol. 2009, 47: 397-400. 10.1128/JCM.01591-08.

Code of Federal Regulations Title 21 developed by the United States Food and Drug Administration. [http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=801.415], Accessed 10 January 2012

Jump RL, Pultz MJ, Donskey CJ: Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?. Antimicrob Agents Chemother. 2007, 51: 2883-7. 10.1128/AAC.01443-06.

Barbut F, Menuet D, Verachten M, Girou E: Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for reduction of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009, 30: 507-14. 10.1086/597232.

Boyce JM, Havill NL, Otter JA, McDonald LC, Adams NM, Cooper T, Thompson A, Wiggs L, Killgore G, Tauman A, Noble-Wang J: Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol. 2008, 29: 723-729. 10.1086/589906.