Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá Ô nhiễm Nguyên tố Vết và Rủi ro Sức khỏe của Thảo dược Thu hái từ Các Khu vực Không bị ô nhiễm và Ô nhiễm ở Tỉnh Tứ Xuyên, Trung Quốc
Tóm tắt
Sự ô nhiễm nguyên tố vết trong các loại thuốc thảo dược của Trung Quốc đã được xác định là một mối quan tâm sức khỏe tiềm tàng đối với người tiêu dùng. Để đánh giá rủi ro sức khỏe của nhóm người sử dụng thảo dược, chín nguyên tố vết (Cu, Cd, Cr, Mo, Ni, Pb, Sr, Zn, và As) đã được điều tra dựa trên nồng độ của chúng trong ba loại cây medicinal phổ biến (Astragalus membranaceus, Codonopsis tangshen và Paris polyphylla var. chinensis) và trong đất từ các khu vực không bị ô nhiễm và ô nhiễm ở tỉnh Tứ Xuyên, Trung Quốc. Kết quả cho thấy rằng hàm lượng kim loại có sự khác biệt đáng kể giữa các cây thuốc và đất từ khu vực không bị ô nhiễm so với khu vực bị ô nhiễm. Không có sự khác biệt đáng kể trong sự tích lũy kim loại được ghi nhận cho các loại thảo dược này được trồng cả ở khu vực không bị ô nhiễm hoặc ô nhiễm. Đánh giá chỉ số rủi ro sức khỏe cho thấy rằng việc nuốt phải đất và chế độ ăn uống được điều trị là những con đường phơi nhiễm chính, cho thấy rằng các kim loại nguyên tố trong đất địa phương có thể gây ra rủi ro tiềm ẩn thông qua sự chuyển giao qua chuỗi thực phẩm. Các giá trị chỉ số nguy hại cho AM (1.473) và CT (1.357) cao hơn giá trị tiêu chuẩn (HQ > 1), trong khi các chỉ số nguy hại cho PC, AM và CT lần lượt là 13.18, 14.33 và 14.01 lần cao hơn giới hạn an toàn (HI > 1) trong khu vực ô nhiễm, cho thấy những nguy cơ sức khỏe không liên quan đến ung thư. Việc nuốt phải đất chịu trách nhiệm cho 36.39 đến 91.06% tổng rủi ro ung thư và chế độ ăn điều trị chiếm 6.35 đến 62.71%, so với hít thở và tiếp xúc da, cho thấy rủi ro sức khỏe ung thư trong thảo dược từ đất ô nhiễm. Trong nghiên cứu này, Pb cho thấy nguy cơ không gây ung thư tương đối cao hơn, trong khi Cr và Ni gây ra rủi ro ung thư cao nhất. Do đó, chúng tôi đề xuất các biện pháp hiệu quả hơn, nên được xem xét để khôi phục Cr, Ni và Pb trong đất nhằm giảm ô nhiễm của chúng trong các khu vực được nghiên cứu.
Từ khóa
#ô nhiễm nguyên tố vết #rủi ro sức khỏe #thảo dược #đất ô nhiễm #Tứ XuyênTài liệu tham khảo
Kong D-D, Li X-Y, Yan H-X et al (2019) Establishment of health risk assessment model for assessing medicinal and edible plants contaminated by heavy metals--take Astragali Radix, Codonopsis Radix and Laminariae Thallus as examples. Zhongguo Zhong Yao Za Zhi 44:5042–5050
Grancieri M, Costa NMB, Tostes M d GV et al (2017) Yacon flour (Smallanthus sonchifolius) attenuates intestinal morbidity in rats with colon cancer. J Funct Foods 37:666–675
Pacheco MT, Hernández-Hernández O, Moreno FJ, Villamiel M (2020) Andean tubers grown in Ecuador: new sources of functional ingredients. Food Biosci 100601
Karahan F, Ozyigit II, Saracoglu IA et al (2019) Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biol Trace Elem Res:1–14
Teschke R, Frenzel C, Glass X, Schulze J, Eickhoff A (2013) Herbal hepatotoxicity: a critical review. Br J Clin Pharmacol 75:630–636
Baye H, Hymete A (2010) Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. Bull Environ Contam Toxicol 84:197–201
Liu X, Song Q, Tang Y et al (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540
Zhang Y, Yin C, Cao S et al (2018) Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Sci Total Environ 622:1499–1508
Sun T, Wu H, Wang X, Ji C, Shan X, Li F (2020) Evaluation on the biomagnification or biodilution of trace metals in global marine food webs by meta-analysis. Environ Pollut 264:113856
Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V (2012) Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem 135:494–501
Proshad R, Zhang D, Uddin M, Wu Y (2020) Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan province, China. Environ Sci Pollut Res:1–16
Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300
Kulal C, Padhi RK, Venkatraj K et al (2020) Study on trace elements concentration in medicinal plants using EDXRF technique. Biol Trace Elem Res:1–10
Aliyu AB, Oshanimi JA, Sulaiman MM et al (2015) Heavy metals and mineral elements of Vernonia ambigua, Vernonia oocephala and Vernonia pupurea used in Northern Nigerian traditional medicine. Vitae 22:27–32
Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184:2261–2273
Islam MS, Proshad R, Asadul Haque M, Hoque MF, Hossin MS, Islam Sarker MN (2020) Assessment of heavy metals in foods around the industrial areas: health hazard inference in Bangladesh. Geocarto Int 35:280–295
Radanovic D, Antic-Mladenovic S, Jakovljevic M (2001) Influence of some soil characteristics on heavy metal content in Hypericum perforatum L. and Achillea millefolium L. In: International Conference on Medicinal and Aromatic Plants. Possibilities and Limitations of Medicinal and Aromatic Plant 576. pp. 295–301
Tripathi P, Dwivedi S, Mishra A, Kumar A, Dave R, Srivastava S, Shukla MK, Srivastava PK, Chakrabarty D, Trivedi PK, Tripathi RD (2012) Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants. Environ Monit Assess 184:2617–2631
Bonari G, Monaci F, Nannoni F, Angiolini C, Protano G (2019) Trace element uptake and accumulation in the medicinal herb Hypericum perforatum L. across different geolithological settings. Biol Trace Elem Res 189:267–276
Kalubula M, Shen H, Khanam T (2020) Assessment of carcinogenic and toxic substances in ‘Insunko’herb. Toxicol Rep
Kormoker T, Proshad R, Islam S, Ahmed S, Chandra K, Uddin M, Rahman M (2019) Toxic metals in agricultural soils near the industrial areas of Bangladesh: ecological and human health risk assessment. Toxin Rev:1–20. https://doi.org/10.1080/15569543.2019.1650777
Sodango TH, Li X, Sha J, Bao Z (2018) Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J Heal Pollut 8:53–70
Jia J, Han L, Liu Y, He N, Zhang Q, Wan X, Zhang YF, Hu JM (2016) Drought risk analysis of maize under climate change based on natural disaster system theory in Southwest China. Acta Ecol Sin 36:340–349
China ACC of (1983) Conventional methods of soil and agricultural chemistry analysis
USEPA (2006) USEPA region III risk-based concentration table: technical background information
Kormoker T, Proshad R, Islam MS, Shamsuzzoha M, Akter A, Tusher TR (2020) Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Rev:1–14
Kumar SB, Padhi RK, Satpathy KK (2019) Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Mar Pollut Bull 141:273–282
Proshad R, Kormoker T, Islam S (2019) Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River, Bangladesh. Toxin Rev:1–25
US-EPA (1999) A risk assessment–multi way exposure spread sheet calculation tool. Washington, DC
Kormoker T, Proshad R, Islam MS, Tusher TR, Uddin M, Khadka S, Chandra K, Sayeed A (2020) Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. Int J Environ Health Res:1–21
Proshad R, Kormoker T, Islam MS et al (2018) Chronic exposure assessment of toxic elements from agricultural soils around the industrial areas of Tangail district, Bangladesh. Arch Agric Environ Sci 3:317–336
Wang Z, Wang H, Wang H, Li Q, Li Y (2019) Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines. Sci Total Environ 653:748–757
Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859
Tack FMG, Van Ranst E, Lievens C, Vandenberghe RE (2006) Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: the role of hydrous oxides of Fe and Mn. Geoderma 137:83–89
Abdu N, Abdullahi AA, Abdulkadir A (2017) Heavy metals and soil microbes. Environ Chem Lett 15:65–84
Fine P, Scagnossi A, Chen Y, Mingelgrin U (2005) Practical and mechanistic aspects of the removal of cadmium from aqueous systems using peat. Environ Pollut 138:358–367
Dinu C, Vasile G-G, Buleandra M et al (2020) Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J Soils Sediments:1–14
Rizwan M, ElShamy MM, Abdel-Aziz HMM (2019) Assessment of trace element and macronutrient accumulation capacity of two native plant species in three different Egyptian mine areas for remediation of contaminated soils. Ecol Indic 106:105463
Sobhanardakani S, Tayebi L, Hosseini SV (2018) Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ Sci Pollut Res 25:2664–2671
Zuo T-T, Li Y-L, He H-Z, Jin HY, Zhang L, Sun L, Gao F, Wang Q, Shen YJ, Ma SC, He LC (2019) Refined assessment of heavy metal-associated health risk due to the consumption of traditional animal medicines in humans. Environ Monit Assess 191:171
Kim D-G, Lee S-D, Yu I-S, Jung K, Park SK (2015) Transfer rates of toxic metals during decoction preparation from herbal medicines and safety evaluation of the final decoction products. Food Sci Biotechnol 24:757–763
Jurowski K, Krośniak M, Fołta M, Tatar B, Cole M, Piekoszewski W (2019) Safety assessment of the trace element impurities Ni and Cr in pharmaceutical herbal products for teething from polish pharmacies. Biol Trace Elem Res 191:517–521
Anderson RA (1993) Recent advances in the clinical and biochemical effects of chromium deficiency. Prog Clin Biol Res 380:221–234
Anderson RA (1995) Chromium and parenteral nutrition. Nutrition 11:83–86
Sun H, Brocato J, Costa M (2015) Oral chromium exposure and toxicity. Curr Environ Heal reports 2:295–303
Nielsen GD, Søderberg U, Jørgensen PJ, Templeton DM, Rasmussen SN, Andersen KE, Grandjean P (1999) Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity. Toxicol Appl Pharmacol 154:67–75
Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, Khodnapur JP, Biradar MS (2018) Primary concept of nickel toxicity–an overview. J Basic Clin Physiol Pharmacol 30:141–152
Bing H, Wu Y, Zhou J, Ming L, Sun S, Li X (2014) Atmospheric deposition of lead in remote high mountain of eastern Tibetan plateau, China. Atmos Environ 99:425–435
Fantke P, Friedrich R, Jolliet O (2012) Health impact and damage cost assessment of pesticides in Europe. Environ Int 49:9–17
Thangavel P, Subbhuraam CV (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proceedings Indian Natl Sci Acad Part B 70:109–130
Uddin M, Zhang D, Proshad R, Haque MK Role of mushrooms in soil mycoremediation: a review
Brima EI (2017) Toxic elements in different medicinal plants and the impact on human health. Int J Environ Res Public Health 14:1209
Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM, Oyeniran AA, Onalaja OJ, Ogunjimi D, Taiwo OT (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172
Shahid M, Dumat C, Khalid S et al (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In: Reviews of Environmental Contamination and Toxicology, vol 241. Springer, pp 73–137
Gao J, Lv J, Wu H, Dai Y, Nasir M (2018) Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium-contaminated soils: insights from fluorescence spectroscopy and environmental implications. Chemosphere 193:1027–1035
Wang J, Yuan J, Yang Z, Huang B, Zhou Y, Xin J, Gong Y, Yu H (2009) Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). J Agric Food Chem 57:8942–8949