Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation

International Journal of Thermophysics - Tập 28 - Trang 661-673 - 2007
Sho Yamasaki1, Tatsumi Arima1, Kazuya Idemitsu1, Yaohiro Inagaki1
1Institute of Environmental Systems, Faculty of Engineering, Kyushu University, Fukuoka, Japan

Tóm tắt

The thermal conductivity of UO2+x has been investigated by an equilibrium molecular dynamics (EMD) simulation up to 2000 K using the Born–Mayer–Huggins interatomic potential with the partially ionic model. In the present EMD system with the Green–Kubo method, the thermal conductivity was determined by the auto-correlation functions of energy and charge currents and the cross-coupling term. The thermal conductivity of UO2+x decreased with an increase of x and temperature. Its temperature dependence was relatively small for large x values, which was attributed to phonon scattering by excess oxygens. In addition, the heat capacity was calculated using the phonon-level density deduced by the velocity auto-correlation function for constituent ions. The phonon velocity was also evaluated by the phonon- dispersion relationship. Using these thermal properties obtained by EMD calculations, the effect of excess oxygens on the phonon mean free path was discussed.

Tài liệu tham khảo

D.R. Olander, Fundamental Aspect of Nuclear Reactor Fuel Elements, TID-26711-P1 (1976). Sindzingre P., Gillan M.J. (1988). J. Phys. C: Solid State Phys. 21:4017 Lindan P.L.D. Gillan M.J. (1991). J. Phys.: Condens. Matter. 3:3929 Motoyama S., Ichikawa Y., Hiwatari Y., Oe A. (1999). Phys. Rev. B 60:292 Yamada K., Kurosaki K., Uno M., Yamanaka S. (2000). J. Alloys. Comp. 307:10 Arima T., Yamasaki T., Inagaki Y., Idemitsu K. (2005). J. Alloys and Comp. 400:43 Yamada K., Kurosaki K., Uno M., Yamanaka S. (2000). J. Alloys. Comp. 307:1 Kurosaki K., Yamada K., Uno M., Yamanaka S., Yamamoto K., Namekawa T. (2001). J. Nucl. Mater. 294:160 Arima T., Yamasaki S., Inagaki Y., Idemitsu K. (2006). J. Alloys Comp. 415:43 Hirao K., Kawamura K. (1994) Material Design Using Personal Computer. Shokabo, Tokyo Inaba H., Sagawa R., Hayashi H., Kawamura K. (1999). Solid State Ionics. 122:95 Hayashi H., Sagawa R., Inaba H., Kawamura K. (2000). Solid State Ionics. 131:281 Willis B.T.M. (1963). Nature. 197:755 Willis B.T.M. (1964). J. Phys. 25:431 Cordfunke E.H.P., Konings R.J.M. (1990) Thermochemical Data for Reactor Materials and Fission Products. North-Holland, Amsterdam Grønvold F. (1955). J. Inorg. Nucl. Chem. 1:357 Martin D.G. (1988). J. Nucl. Mater. 152:94 Sindzingre P., Gillan M.J. (1990). J. Phys.: Condens. Matter. 2:7033 Galamba N., Nieto de Castro C.A., Ely J.F. (2004). J. Chem. Phys. 120:8676 Bernu B., Hansen J.P. (1982). Phys. Rev. Lett. 48:1375 Pierleoni C., Ciccotti G., Bernu B. (1987). Europhys. Lett. 4:1115 Pierleoni C., Ciccotti G. (1990). J. Phys: Condens. Matter. 2:1315 Fink J.K. (2000). J. Nucl. Mater. 279:1 Lucuta P.G., Matzke H., Hastings I.J. (1996). J. Nucl. Mater. 232:166 Amaya M., Kubo T., Korei Y. (1996). J. Nucl. Sci. Technol. 33:636 Godfrey T.G., Fulkerson W., Kollie T.G., Moore J.P., McElroy D.L. (1965). J. Am. Ceram. Soc. 48:297 Moore J.P., McElroy D.L. (1971). J. Am. Ceram. Soc. 54:40 Kittel C. (1996) Introduction to Solid State Physics, 7th ed. Wiley, New York SCDAP/RELAP5–3D© CODE MANUAL, Vol. 4: MATPRO – A Library of Materials Properties for Light-Water-Reactor Accident Analysis, INEEL/EXT-02–00589, Rev. 2.2 (Oct. 2003).