Evaluation of Release Kinetics and Mechanisms of Curcumin and Curcumin-β-Cyclodextrin Inclusion Complex Incorporated in Electrospun Almond Gum/PVA Nanofibers in Simulated Saliva and Simulated Gastrointestinal Conditions

Atefe Rezaei1, Ali Nasirpour2
1Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
2Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Paramera, E., Konteles, S., & Karathanos, V. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125, 892–902.

Mohan, P., Sreelakshmi, G., Muraleedharan, C., & Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vibrational Spectroscopy, 62, 77–84.

Singh, R., Tonnesen, H. H., Vogensen, S. B., Loftsson, T., & Másson, M. (2010). Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–vis titration. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 66, 335–348.

Yallapu, M., Jaggi, M., & Chauhan, S. (2010). b-Cyclodextrin–curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids and Surfaces B: Biointerfaces, 79, 113–125.

Ntoutoume, G. M. A. N., Granet, R., Mbakidi, J. P., Brégier, F., Léger, D. Y., Fidanzi-Dugas, C., Lequart, V., Joly, N., Liagre, B., Chaleix, V., & Sol, V. (2015). Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorganic & Medicinal Chemistry Letters, 26, 941–945.

Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–b-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry, 153, 361–370.

Dadhaniya, P., Patel, C., Muchhara, J., Bhadja, N., Mathuria, N., & Vachhani, K. (2011). Safety assessment of a solid lipid curcumin particle preparation: acute and subchronic toxicity studies. Food and Chemical Toxicology, 49, 1834–1842.

Das, R. K., Kasoju, N., & Bora, U. (2010). Encapsulation of curcumin in alginatechitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 153–160.

Blanco-Padilla, A., Lopez-Rubio, A., Loarca-Pina, G., Gomez-Mascaraque, L. G., & Mendoza, S. (2015). Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT - Food Science and Technology, 63, 1137–1144.

Hu, J., Zeng, F., Wei, J., Chen, Y., & Chen, Y. (2014). Novel controlled drug delivery system for multiple drugs based on electrospun nanofibers containing nanomicelles. Journal of Biomaterials Science, Polymer, (3), 257–268.

Li, L., Braiteh, F., & Kurzrock, R. (2005). Liposome-encapsulated curcumin. Cancer, 104, 1322–1331.

Dhule, S. S., Penfornis, P., Frazier, T., Walker, R., Feldman, J., Tan, G., He, J., Alb, A., John, V., & Pochampally, R. (2012). Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 440–451.

Popat, A., Karmakar, S., Jambhrunkar, S., Xu, C., & Yu, C. (2014). Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids and Surfaces B: Biointerfaces, 117, 520–527.

Szente, L., & Szejtli, J. (2004). Cyclodextrins as food ingredients. Trends in Food Science & Technology, 15, 137–142.

Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety, 14, 269–284.

Sampath, M., Lakra, R., Korrapati, P., & Sengottuvelan, B. (2014). Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids and Surfaces B: Biointerfaces, 117, 128–134.

Rezaei, A., Tavanai, H., & Nasirpour, A. (2016). Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. International Journal of Biological Macromolecules, 91, 536–543.

Rezaei, A., Nasirpour, A., & Tavanai, H. (2016). Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocolloids, 60, 461–469.

Sarika, P. R., James, N. R., Kumar, P. R. A., Raj, D. K., & Kumary, T. V. (2015). Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydrate Polymers, 134, 167–174.

Manju, S., & Sreenivasan, K. (2011). Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. Journal of Colloid and Interface Science, 359(1), 318–325.

Dey, S., & Sreenivasan, K. (2014). Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydrate Polymers, 99, 499–507.

Deng, L., Kang, X., Liu, Y., Feng, F., & Zhang, H. (2017). Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry, 231, 70–77.

Taylor, S., & McDowell, I. (1992). Determination of the curcuminoid pigments in turmeric (Curcuma domestica Val) by reversed-phase high-performance liquid chromatography. Chromatographia, 34, 74–77.

Carvalhd, D. M., Takeuchi, K. P., Geraldine, R. M., Moura, C. J., & Torres, M. C. L. (2015). Production, solubility and antioxidant activity of curcumin nanosuspension. Food Science and Technology, 35(1), 115–119.

Galia, E., Nicolaides, E., Horter, D., Lobenberg, R., Reppas, C., & Dressman, J. B. (1998). Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharmaceutical Research, 15(5), 698–705.

Stippler, E., Kopp, S., & Dressman, J. B. (2004). Comparison of US pharmacopeia simulated intestinal fluid TS (without pancreatin) and phosphate standard buffer pH 6.8, TS of the international pharmacopoeia with respect to their use in in vitro dissolution testing. Dissolution Technologies. https://doi.org/10.14227/DT110204P6 .

Davis, R., Hartman, C., & Fincher, J. (1971). Dialysis of ephedrine and pentobarbital from whole human saliva and simulated saliva. Journal of Pharmaceutical Sciences, 60(3), 429–432.

Donbrow, M., & Samuelov, Y. (1980). Zero order drug delivery from double-layered porous films: release rate profiles from ethyl cellulose, hydroxypropyl cellulose and polyethylene glycol mixtures. Journal of Pharmacy and Pharmacology, 32(7), 463–470.

Kopcha, M., Lordi, N., & Tojo, K. (1991). Evaluation of release from selected thermosoftening vehicles. The Journal of Pharmacy and Pharmacology, 43(6), 382–387.

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanism of solute release from porous hydrophilic polymers. International Journal of Pharmaceutical Sciences, 15, 25–35.

Li, N., Fu, C., & Zhang, L. (2014). Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Material Science Engineering C, Materials for Biological Application, 36, 287–293.

Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. Journal of Pharmaceutical Sciences, 50(10), 874–875.

Wang, H., Hao, L., Wang, P., Chen, M., Jiang, S., & Jiang, S. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids, 63, 437–446.

Brahatheeswaran, D., Mathew, A., Aswathy, R. G., Nagaoka, Y., Venugopal, K., Yoshida, Y., Maekawa, T., & Sakthikumar, D. (2012). Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomedical Materials, 7, 1–16.

Yilmaz, A., Bozkurt, F., Cicek, P. K., Dertli, E., Durak, M. Z., & Yilmaz, M. T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science and Emerging Technologies, 37, 74–83.

Yen, F. L., Wu, T. H., Tzeng, C. W., Lin, L. T., & Lin, C. C. (2010). Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. Journal of Agricultural and Food Chemistry, 58, 7376–7382.

Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88, 146–162.

Lin, S., & Kao, Y. (1989). Solid particulates of drug β-cyclodextrin inclusion complexes directly prepared by spray drying technique. International Journal of Pharmaceutics, 56, 249–259.

Guyot, M., Fawaz, F., Bildet, J., Bonini, F., & Lagueny, A. M. (1995). Physicochemical characterization and dissolution of norfloxacin/cyclodextrin inclusion compounds and PEG solid dispersions. International Journal of Pharmaceutics, 123, 53–63.

Aytac, Z., & Uyar, T. (2017). Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. International Journal of Pharmaceutics, 518, 177–184.

Sedghi, R., & Shaabani, A. (2016). Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer, 101, 151–157.

Mutlu, G., Calamak, S., Ulubayram, K., & Guven, E. (2018). Curcumin-loaded electrospun PHBV nanofibers as potential wound dressing material. Journal of Drug Delivery Science and Technology, 43, 185–193.

Sun, X., Williams, G., Hou, X., & Zhu, L. (2013). Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate polymer, 94, 147–153.