Evaluation of Regression Rate Enhancing Concepts and Techniques for Hybrid Rocket Engines

Christopher Glaser1, Jouke Hijlkema1, J. Anthoine1
1ONERA/DMPE, Université de Toulouse, 31410, Mauzac, France

Tóm tắt

AbstractThe low regression rate of Hybrid Rocket Engines (HREs) is one prominent characteristic that is addressed in most abstracts concerning hybrid propulsion. Over the years, researchers developed and investigated numerous ways to tackle the low regression rate problem of HREs. This article is a collection and assessment of these diverse methods and designs. It allows for a quick overview of the different mechanisms that are being employed and can serve both as information and inspiration. The enhancement ideas are grouped together as (a) adjustments to the solid fuel chemical properties, (b) advanced injection methods and concepts and (c) improving the combustion chamber design. These different techniques are discussed and their individual impact on the regression rate is assessed both qualitatively and quantitatively. All methods that are presented come with a different set of advantages and disadvantages, making the regression rate enhancement a trade-off problem. In our view, the most promising designs and methods are those that only call for minor adjustments to the HRE design, as they can be also added to already existing engines. Above all, it is to be said that regression rate enhancing techniques that change the unique features of HREs (namely safety, simplicity and low cost) are to be employed with caution. Only if the achievable regression rate increase is justifying the implications for the HRE in the envisioned use-case, these concepts represent promising alternatives to the status quo.

Từ khóa


Tài liệu tham khảo

Altman, D., Holzman, A.: Overview and history of hybrid rocket propulsion. In: Chiaverini, M.J., Kuo, K.K. (eds.) Fundamentals of Hybrid Rocket Combustion and Propulsion, pp. 1–36. American Institute of Aeronautics and Astronautics, Reston (2007)

Casalino, L., Pastrone, D.: Optimal design of hybrid rocket motors for launchers upper stages. J. Propuls. Power 26(3), 421–427 (2010). https://doi.org/10.2514/1.41856

Casalino, L., Letizia, F., Pastrone, D.: Optimization of hybrid upper-stage motor with coupled evolutionary/indirect procedure. J. Propuls. Power 30(5), 1390–1398 (2014). https://doi.org/10.2514/1.b35111

Casalino, L., Masseni, F., Pastrone, D.: Comparison of robust design approaches for hybrid rocket engines. In: 53rd AIAA/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2017). https://doi.org/10.2514/6.2017-4642

Casalino, L., Masseni, F., Pastrone, D.: Viability of an electrically driven pump-fed hybrid rocket for small launcher upper stages. Aerospace 6(3), 36 (2019). https://doi.org/10.3390/aerospace6030036

Kuo, K., Chiaverini, M.: Challenges of hybrid rocket propulsion in the 21st century. In: Fundamentals of Hybrid Rocket Combustion and Propulsion, pp. 593–638. American Institute of Aeronautics and Astronautics, Reston, Virginia (2007). https://doi.org/10.2514/5.9781600866876.0593.0638

Sutton, G.: Rocket Propulsion Elements. Wiley, New York (2001)

Boardman, T.: Hybrid propellant rockets. In: Rocket Propulsion Elements, vol. 7, pp. 579–607 (2001)

Barato, F., Grosse, M., Bettella, A.: Hybrid rocket fuel residuals—an overlooked topic. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2014). https://doi.org/10.2514/6.2014-3753

Glaser, C., Hijlkema, J., Anthoine, J.: Review of regression rate enhancement techniques for hybrid rocket engines. In: Proceedings of the XXVI International Congress of the Italian Association of Aeronautics and Astronautics—AIDAA XXVI, Virtual Congress, vol. 1, pp. 39–106 (2021)

Marxman, G., Gilbert, M.: Turbulent boundary layer combustion in the hybrid rocket. In: Symposium (International) on Combustion 9(1), 371–383 (1963). https://doi.org/10.1016/s0082-0784(63)80046-6

Marquardt, T., Majdalani, J.: Review of classical diffusion-limited regression rate models in hybrid rockets. Aerospace 6(6), 75 (2019). https://doi.org/10.3390/aerospace6060075

Chiaverini, M.: Review of solid-fuel regression rate behavior in classical and nonclassical hybrid rocket motors. In: Fundamentals of Hybrid Rocket Combustion and Propulsion, pp. 37–126. American Institute of Aeronautics and Astronautics, Reston, Virginia (2007). https://doi.org/10.2514/5.9781600866876.0037.0126

Casillas, E., Shaeffer, C., Trowbridge, J.: Cost and performance payoffs inherent in increased fuel regression rates. In: 33rd Joint Propulsion Conference and Exhibit (1997). https://doi.org/10.2514/6.1997-3081

Flittie, K., Estey, P., Kniffen, J.: The Aquila launch vehicle: a hybrid propulsion space booster. Acta Astronaut. 28, 99–110 (1992). https://doi.org/10.1016/0094-5765(92)90014-A

Whittighill, G., McKinney, B.: The Aquila launch service for small satellites. In: 28th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (1992). https://doi.org/10.2514/6.1992-3588

Estey, P.: Hybrid technology option project—a cooperative effort for tomorrow’s space transportation. In: Space Programs and Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (1994). https://doi.org/10.2514/6.1994-4503

Buhaly, D.: Castor 120 motor development progress. In: 31st Joint Propulsion Conference and Exhibit (1995). https://doi.org/10.2514/6.1995-2454

Stevens, T., Lockwood, P., McInerney, J.: Taurus—small launch vehicle technologies development. In: Space Programs and Technologies Conference (1995). https://doi.org/10.2514/6.1995-3623

Kearney, D., Joiner, K., Gnau, M., Casemore, M.: Improvements to the marketability of hybrid propulsion technologies. In: AIAA SPACE 2007 Conference & Exposition. American Institute of Aeronautics and Astronautics, Reston, Virginia (2007). https://doi.org/10.2514/6.2007-6144

Pastrone, D.: Approaches to low fuel regression rate in hybrid rocket engines. Int. J. Aerosp. Eng. (2012). https://doi.org/10.1155/2012/649753

Karabeyoglu, M.A., Altman, D., Cantwell, B.J.: Combustion of liquefying hybrid propellants: part 1, general theory. J. Propuls. Power 18(3), 610–620 (2002). https://doi.org/10.2514/2.5975

Karabeyoglu, M.A., Cantwell, B.J.: Combustion of liquefying hybrid propellants: part 2, stability of liquid films. J. Propuls. Power 18(3), 621–630 (2002). https://doi.org/10.2514/2.5976

Karabeyoglu, A., Zilliac, G., Cantwell, B.J., DeZilwa, S., Castellucci, P.: Scale-up tests of high regression rate paraffin-based hybrid rocket fuels. J. Propuls. Power 20(6), 1037–1045 (2004). https://doi.org/10.2514/1.3340

Veale, K., Adali, S., Pitot, J., Brooks, M.: A review of the performance and structural considerations of paraffin wax hybrid rocket fuels with additives. Acta Astronaut. 141, 196–208 (2017). https://doi.org/10.1016/j.actaastro.2017.10.012

Wada, Y., Jikei, M., Kato, R., Kato, N., Hori, K.: Application of Low Melting Point Thermoplastics to Hybrid Rocket Fuel. Trans. Jpn. Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Jpn. 10(ists28), 1–5 (2012). https://doi.org/10.2322/tastj.10.Pa_1

Bisin, R., Verga, A., Bruschi, D., Paravan, C.: Strategies for paraffin-based fuels reinforcement: 3d printing and blending with polymers. In: AIAA Propulsion and Energy 2021 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia (2021). https://doi.org/10.2514/6.2021-3502

Bisin, R., Paravan, C., Alberti, S., Galfetti, L.: A new strategy for the reinforcement of paraffin-based fuels based on cellular structures: the armored grain—mechanical characterization. Acta Astronaut. 176, 494–509 (2020). https://doi.org/10.1016/j.actaastro.2020.07.003

Wang, Z., Lin, X., Li, F., Yu, X.: Combustion performance of a novel hybrid rocket fuel grain with a nested helical structure. Aerosp. Sci. Technol. 97, 105613 (2020). https://doi.org/10.1016/j.ast.2019.105613

Schmierer, C., Kobald, M., Fischer, U., Tomilin, K., Petrarolo, A., Hertel, F.: Advancing Europes hybrid rocket engine technology with paraffin and LOX. In: Proceedings of the 8th European Conference for Aeronautics and Space Sciences. Madrid, Spain, 1-4 July 2019 (2019). https://doi.org/10.13009/EUCASS2019-682

Equatorial Space Systems. https://www.equatorialspace.com/ Accessed 24 Apr 2021

Gamal, H., Magiera, R., Matusiewicz, A., Hubert, D., Kant, P., Szczepinski, P., Chelstowski, T.: Development of a suborbital inexpensive rocket for affordable space access. In: 69th International Astronautical Congress (IAC), Bremen, Germany, vol. 17 , pp. 12869–12878 (2018)

Karabeyoğlu, A.: In: De Luca, L.T., Shimada, T., Sinditskii, V.P., Calabro, M. (eds.) Performance Additives for Hybrid Rockets, pp. 139–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-27748-6_5

Risha, G., Evans, B., Boyer, E., Kuo, K.: Metals, Energetic additives, and special binders used in solid fuels for hybrid rockets. In: Fundamentals of Hybrid Rocket Combustion and Propulsion. Progress in Astronautics and Aeronautics, vol. 218, pp. 413–456. American Institute of Aeronautics and Astronautics, Reston, Virginia (2007). https://doi.org/10.2514/5.9781600866876.0413.0456

Qin, Z., Paravan, C., Colombo, G., Zhao, F., Shen, R., Yi, J.-H., DeLuca, L.: Ignition and combustion of HTPB-based solid fuels loaded with innovative micron-sized metals. Int. J. Energ. Mater. Chem. Propuls. (2018). https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2018022772

Paravan: Nano-sized and mechanically activated composites: perspectives for enhanced mass burning rate in aluminized solid fuels for hybrid rocket propulsion. Aerospace 6(12), 127 (2019). https://doi.org/10.3390/aerospace6120127

Karabeyoglu, A.: Combustion instability and transient behavior in hybrid rocket motors. In: Fundamentals of Hybrid Rocket Combustion and Propulsion, pp. 351–412 (2007). https://doi.org/10.2514/5.9781600866876.0351.0412

Yu, H., Yu, X., Chen, S., Zhang, W., DeLuca, L., Ruiqi, S.: The catalysis effects of acetylacetone complexes on polymer matrix of HTPB-based fuels. FirePhysChem (2021). https://doi.org/10.1016/j.fpc.2021.11.009

Yu, H., Chen, S., Yu, X., Zhang, W., Paravan, C., DeLuca, L.T., Shen, R.: Nickel acetylacetonate as decomposition catalyst for HTPB-based fuels: regression rate enhancement effects. Fuel 305, 121539 (2021). https://doi.org/10.1016/j.fuel.2021.121539

Kubota, N., Ichida, M., Fujisawa, T.: Combustion processes of propellants with embedded metal wires. AIAA J. 20(1), 116–121 (1982). https://doi.org/10.2514/3.51056

Shin, K.-H., Lee, C., Chang, S.Y., Koo, J.Y.: The enhancement of regression rate of hybrid rocket fuel by various methods. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (2005). https://doi.org/10.2514/6.2005-359

Mingireanu, F.: Solid methane hybrid rocket engine. Regression speed increase by oxidizer doping and embedding wires. Vehicle optimization application through motor parameters. In: Proceedings of 5th International Conference on Recent Advances in Space Technologies—RAST2011, pp. 690–695 (2011). https://doi.org/10.1109/RAST.2011.5966928

Shark, S., Pourpoint, T., Son, S., Heister, S.: Performance of dicyclopentadiene/H2O2-based hybrid rocket motors with metal hydride additives. J. Propuls. Power 29, 1122–1129 (2013). https://doi.org/10.2514/1.B34867

Maggi, F., Gariani, G., Galfetti, L., DeLuca, L.T.: Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int. J. Hydrogen Energy 37(2), 1760–1769 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.018

DeLuca, L., Rossettini, L., Kappenstein, C., Weiser, V.: Ballistic characterization of ALH3-based propellants for solid and hybrid rocket propulsion. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, (2009). https://doi.org/10.2514/6.2009-4874

Karabeyoglu, A.M., Arkun, U.: Evaluation of fuel additives for hybrid rockets and SFRJ systems. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2014). https://doi.org/10.2514/6.2014-3647

Su, W., Zhao, F., Ma, L., Tang, R., Dong, Y., Kong, G., Zhang, Y., Niu, S., Tang, G., Wang, Y., Pang, A., Li, W., Wei, L.: Synthesis and stability of hydrogen storage material aluminum hydride. Materials 14(11), 2898 (2021). https://doi.org/10.3390/ma14112898

Carmicino, C., Scaramuzzino, F., Russo Sorge, A.: Trade-off between paraffin-based and aluminium-loaded HTPB fuels to improve performance of hybrid rocket fed with N2O. Aerosp. Sci. Technol. 37, 81–92 (2014). https://doi.org/10.1016/j.ast.2014.05.010

Evans, B., Favorito, N., Risha, G., Boyer, E., Wehrman, R., Kuo, K.: Characterization of nano-sized energetic particle enhancement of solid-fuel burning rates in an x-ray transparent hybrid rocket engine. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2004). https://doi.org/10.2514/6.2004-3821

Galfetti, L., Merotto, L., Boiocchi, M., Maggi, F., DeLuca, L.: Ballistic and rheological characterization of paraffinbased fuels for hybrid rocket propulsion. Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2011). https://doi.org/10.2514/6.2011-5680

Fernandes, P., Gomes, J., Kawachi, E., Nagamachi, M., Ferrão, L., Cardoso, K.: Exploring the mechanical, thermal and ballistic effects of carbon black on paraffin-based fuels for hybrid rocket motors. J. Aerosp. Technol. Manag. (2020). https://doi.org/10.5028/jatm.etmq.64

Pimenta dos Santos, G., Mota Pedreira, S., Lacava, P.: Physical property and carbon black distribution impact on propulsion efficiency of paraffin-based fuel. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) 1 (2012). https://doi.org/10.1115/IMECE2012-89201

Chen, S., Tang, Y., Yu, H., Guan, X., DeLuca, L.T., Zhang, W., Shen, R., Ye, Y.: Combustion enhancement of hydroxyl-terminated polybutadiene by doping multiwall carbon nanotubes. Carbon 144, 472–480 (2019). https://doi.org/10.1016/j.carbon.2018.12.063

Elanjickal, S., Gany, A.: Enhancement of the fuel regression rate in hybrid propulsion by expandable graphite additive. Combust. Sci. Technol. 192(7), 1253–1273 (2020). https://doi.org/10.1080/00102202.2020.1748017

Muller, G.T., Gany, A.: Burning phenomena of a polymeric fuel containing expandable graphite. Propellants Explos. Pyrotech. 45(11), 1764–1768 (2020). https://doi.org/10.1002/prep.202000138

Frederick, R.A., Whitehead, J.J., Knox, L.R., Moser, M.D.: Regression rates study of mixed hybrid propellants. J. Propuls. Power 23(1), 175–180 (2007). https://doi.org/10.2514/1.14327

Wada, Y., Hori, K., Hasegawa, K., Yagishita, T., Kobayashi, K., Iwasaki, S., Satoh, H., Nishioka, M., Kimura, M.: Glycidyl azide polymer and polyethylene glycol as hybrid rocket fuel. Trans. Jpn. Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Jpn. 10(ists28), 1–116 (2012)

Dallas, J.A., Raval, S., Alvarez Gaitan, J.P., Saydam, S., Dempster, A.G.: The environmental impact of emissions from space launches: a comprehensive review. J. Clean. Prod. 255, 120209 (2020). https://doi.org/10.1016/j.jclepro.2020.120209

Programmatic environmental impact statement for licensing launches peis—volume1. Technical report, Office of the Associate Administrator for Commercial Space Transportation (AST), Federal Aviation Administration, Dept. of Transportation (2001)

Ross, M.N., Sheaffer, P.M.: Radiative forcing caused by rocket engine emissions. Earth’s Future 2(4), 177–196 (2014). https://doi.org/10.1002/2013EF000160

Solomon, S.: Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37(3), 275–316 (1999). https://doi.org/10.1029/1999RG900008

Tromp, T., Shia, R.-L., Allen, M., Eiler, J., Yung, Y.: Potential environmental impact of a hydrogen economy on the stratosphere. Science (New York, N.Y.) 300, 1740–2 (2003). https://doi.org/10.1126/science.1085169

Solomon, S., Rosenlof, K., Portmann, R., Daniel, J., Davis, S., Sanford, T., Plattner, G.-K.: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science (New York, N.Y) 327, 1219–23 (2010). https://doi.org/10.1126/science.1182488

Carmicino, C., Sorge, A.R.: Role of injection in hybrid rockets regression rate behaviour. J. Propuls. Power 21(4), 606–612 (2005). https://doi.org/10.2514/1.9945

Carmicino, C., Sorge, A.R.: Influence of a conical axial injector on hybrid rocket performance. J. Propuls. Power 22(5), 984–995 (2006). https://doi.org/10.2514/1.19528

Bianchi, D., Nasuti, F., Carmicino, C.: Hybrid rockets with axial injector: port diameter effect on fuel regression rate. J. Propuls. Power 32(4), 984–996 (2016). https://doi.org/10.2514/1.B36000

Soller, S., Maeding, C., Preclik, D., Gautier, P., Orlandi, O., Theil, D.: Technology demonstrators for hybrid rocket propulsion in Europe. Technical report (2012)

Bouziane, M., Bertoldi, A.E.M., Milova, P., Hendrick, P., Lefebvre, M.: Performance comparison of oxidizer injectors in a 1-kn paraffin-fueled hybrid rocket motor. Aerosp. Sci. Technol. 89, 392–406 (2019). https://doi.org/10.1016/j.ast.2019.04.009

Bellomo, N., Barato, F., Faenza, M., Lazzarin, M., Bettella, A., Pavarin, D.: Numerical and experimental investigation of unidirectional vortex injection in hybrid rocket engines. J. Propuls. Power 29(5), 1097–1113 (2013). https://doi.org/10.2514/1.B34506

Quadros, F.D.A., Lacava, P.T.: Swirl injection of gaseous oxygen in a lab-scale paraffin hybrid rocket motor. J. Propuls. Power 35(5), 896–905 (2019). https://doi.org/10.2514/1.B37283

de Morais Bertoldi, A.E., Veras, C.A.G., Hendrick, P.: Experimental evaluation of pressure-swirl injection system over solid fuel regression rate in hybrid rockets. In: 2017 EUCASS Conference (2017). https://doi.org/10.13009/EUCASS2017-661

Yuasa, S., Yamamoto, K., Hachiya, H., Kitagawa, K., Oowada, Y.: Development of a small sounding hybrid rocket with a swirling-oxidizer-type engine. In: 37th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (2001). https://doi.org/10.2514/6.2001-3537

Saburo, Y., Noriko, S., Kousuke, H.: Controlling Parameters for fuel regression rate of swirling-oxidizer-flow-type hybrid rocket engine. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012). https://doi.org/10.2514/6.2012-4106

Sakurai, T., Yuasa, S., Ando, H., Kitagawa, K., Shimada, T.: Performance and regression rate characteristics of 5-kN swirling-oxidizer-flow-type hybrid rocket engine. J. Propuls. Power 33(4), 891–901 (2017). https://doi.org/10.2514/1.b36239

Shimada, T., Yuasa, S., Nagata, H., Aso, S., Nakagawa, I., Sawada, K., Hori, K., Kanazaki, M., Chiba, K., Sakurai, T., Morita, T., Kitagawa, K., Wada, Y., Nakata, D., Motoe, M., Funami, Y., Ozawa, K., Usuki, T.: Hybrid Propulsion technology development in japan for economic space launch. In: Springer Aerospace Technology, pp. 545–575. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-27748-6_22

Saito, Y., Yokoi, T., Yasukochi, H., Soeda, K., Totani, T., Wakita, M., Nagata, H.: Fuel regression characteristics of a novel axial-injection end-burning hybrid rocket. J. Propuls. Power 34(1), 247–259 (2018). https://doi.org/10.2514/1.b36369

Nagata, H., Okada, K., Sanda, T., Kato, T., Akiba, R., Satori, S., Kudo, I.: Combustion characteristics of fibrous fuels for dry towel hybrid rocket motor. J. Sp. Technol. Sci. 13(1), 1–11116 (1997). https://doi.org/10.11230/jsts.13.1_11

Saito, Y., Yokoi, T., Neumann, L., Yasukochi, H., Soeda, K., Totani, T., Wakita, M., Nagata, H.: Investigation of axial-injection end-burning hybrid rocket motor regression. Adv. Aircr. Spacecr. Sci. 4, 281–296 (2017). https://doi.org/10.12989/aas.2017.4.3.281

Nagata, H., Teraki, H., Saito, Y., Kanai, R., Yasukochi, H., Wakita, M., Totani, T.: Verification firings of end-burning type hybrid rockets. J. Propuls. Power 33, 1–5 (2017). https://doi.org/10.2514/1.B36359

Hitt, M.A.: Performance analysis of axial-injection, end-burning hybrid rocket propulsion system. J. Spacecr. Rocket. 57(6), 1408–1413 (2020). https://doi.org/10.2514/1.A34767

Hitt, M.A.: Axial-injection, end-burning hybrid rocket motor sensitivity study. In: AIAA Propulsion and Energy 2021 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia (2021). https://doi.org/10.2514/6.2021-3498

Hitt, M.A., Frederick, R.A.: Regression rate model predictions of an axial-injection end-burning hybrid motor. J. Propuls. Power 34(5), 1116–1123 (2018). https://doi.org/10.2514/1.B36839

Li, X., Tian, H., Yu, N., Cai, G.: Experimental investigation of combustion in axial-injection end-burning hybrid rocket motor. J. Propuls. Power 31, 1–7 (2015). https://doi.org/10.2514/1.B35480

Hitt, M.A., Agnew, J.F., Frederick, R.A.: Porosity effects on axial-injection, end-burning hybrid rocket motor regression. In: AIAA Propulsion and Energy 2020 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia (2020). https://doi.org/10.2514/6.2020-3756

Araki, K., Hirata, Y., Oyama, S., Ohe, K., Aso, S., Tani, Y., Shimada, T.: A Study on performance improvement of paraffin fueled hybrid rocket engines with multi-section swirl injection method. (2013). https://doi.org/10.2514/6.2013-3634

Oyama, S., Hirata, Y., Araki, K., Ohe, K., Aso, S., Tani, Y., Shimada, T.: Effects of multi-section swirl injection method on fuel regression rate of high density polyethylene fueled hybrid rocket engine. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2013). https://doi.org/10.2514/6.2013-4040

Ohe, K., Oyama, S., Araki, K., Aso, S., Tani, Y., Shimada, T.: Study on hybrid rocket with multi-section swirl injection method toward flight experiments of subscale space plane. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2014). https://doi.org/10.2514/6.2014-3954

Li, C., Cai, G., Tian, H.: Numerical analysis of combustion characteristics of hybrid rocket motor with multi-section swirl injection. Acta Astronaut. 123, 26–36 (2016). https://doi.org/10.1016/j.actaastro.2016.02.023

Vignesh, B., Kumar, R.: Effect of multi-location swirl injection on the performance of hybrid rocket motor. Acta Astronaut. 176, 111–123 (2020). https://doi.org/10.1016/j.actaastro.2020.06.029

Pons, A., Yu, N., Zhao, B.: Testing and evaluation of a double-tube hybrid rocket motor. In: 51st AIAA/SAE/ASEE Joint Propulsion Conference (2015). https://doi.org/10.2514/6.2015-4035

Yu, N., Zhao, B., Lorente, A.P., Wang, J.: Parametric study and performance analysis of hybrid rocket motors with double-tube configuration. Acta Astronaut. 132, 90–96 (2017). https://doi.org/10.1016/j.actaastro.2016.12.003

Kahraman, M., Ozkol, I., Karabeyoglu, A.: Regression rate enhancement of hybrid rockets by introducing novel distributed tube injector. J. Propuls. Power (2021). https://doi.org/10.2514/1.B38417

Knuth, W., Chiaverini, M., Gramer, D., Sauer, J.: Solid-fuel regression rate and combustion behavior of vortex hybrid rocket engines. In: 35th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (1999). https://doi.org/10.2514/6.1999-2318

Knuth, W., Chiaverini, M., Gramer, D., Sauer, J.: Solid-fuel regression rate behavior of vortex hybrid rocket engines. J. Propuls. Power (2002). https://doi.org/10.2514/2.5974

J. Caravella, J., Heister, S., Wernimont, E.: Characterization of fuel regression in a radial flow hybrid rocket. In: 32nd Joint Propulsion Conference and Exhibit (1996). https://doi.org/10.2514/6.1996-3096

Caravella, J.R., Heister, S.D., Wernimont, E.J.: Characterization of fuel regression in a radial flow hybrid rocket. J. Propuls. Power 14(1), 51–56 (1998). https://doi.org/10.2514/2.5265

Haag, G., Sweeting, M., Richardson, G.: An alternative geometry hybrid rocket for spacecraft orbit transfer manoeuvers. In: IAC 2000 Congress Proceedings, 51st International Astronautical Congress (IAC), 2–6 October 2000, Brazil, Brazil (2000). https://dl.iafastro.directory/event/IAC-2000/paper/IAC-00.W.2.07/

Haag, G.S.: Alternative geometry hybrid rockets for spacecraft orbit transfer. PhD thesis, University of Surrey (2001)

Rice, E.E., Gramer, D.J., Clair, C.P.S., Chiaverini, M.J.: Mars isru co/o2 rocket engine development and testing. In: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems, vol. 2, p. 101 (2003)

Lestrade, J.-Y., Messineo, J., Anthoine, J., Musker, A., Barato, F.: Development and test of an innovative hybrid rocket combustion chamber. In: Proceedings of the 7th European Conference for Aeronautics and Space Sciences. Milano, Italy, 3-6 July 2017 (2017). https://doi.org/10.13009/EUCASS2017-414

Lestrade, J.-Y., Anthoine, J., Musker, A.J., Lecossais, A.: Experimental demonstration of an end-burning swirling flow hybrid rocket engine. Aerosp. Sci. Technol. 92, 1–8 (2019). https://doi.org/10.1016/j.ast.2019.05.057

DeLuca, L.T., Bernelli, F., Maggi, F., Tadini, P., Pardini, C., Anselmo, L., Grassi, M., Pavarin, D., Francesconi, A., Branz, F., Chiesa, S., Viola, N., Bonnal, C., Trushlyakov, V., Belokonov, I.: Active space debris removal by a hybrid propulsion module. Acta Astronaut. 91, 20–33 (2013). https://doi.org/10.1016/j.actaastro.2013.04.025

Paravan, C., Glowacki, J., Carlotti, S., Maggi, F., Galfetti, L.: Vortex combustion in a lab-scale hybrid rocket motor. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016). https://doi.org/10.2514/6.2016-4562

Paravan, C., Carlotti, S., Maggi, F., Galfetti, L.: Quasi-steady and forced transient burning of a vortex flow hybrid motor. In: 7th European Conference for Aeronautics and Space Sciences (EUCASS) (2017). https://doi.org/10.13009/EUCASS2017-468

Glowacki, J., Maggi, F., Galfetti, L.: Numerical simulation of vortex combustion in a hybrid rocket motor. In: Proceedings of the 7th European Conference for Aeronautics and Space Sciences. Milano, Italy, 3-6 July 2017 (2017). https://doi.org/10.13009/EUCASS2017-477

Hashish, A., Paravan, C., Verga, A.: Liquefying fuel combustion in a lab-scale vortex flow pancake hybrid rocket engine. In: AIAA Propulsion and Energy 2021 Forum (2021). https://doi.org/10.2514/6.2021-3519

Jansen, R., Teegarden, E., Gimelshein, S.: Characterization of a vortex-flow eng-burning hybrid rocket motor for nanosatellite applications. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Reston, Virginia (2012). https://doi.org/10.2514/6.2012-125

Hayashi, D., Sakurai, T.: A Fundamental study of a end-burning swirling-flow hybrid rocket engine using low melting temperature fuels. In: 51st AIAA/SAE/ASEE Joint Propulsion Conference (2015). https://doi.org/10.2514/6.2015-4138

Sakurai, T., Oishige, Y., Saito, K.: Fuel regression behavior of swirling-injection end-burning hybrid rocket engine. J. Fluid Sci. Technol. 14(3), 0025 (2019). https://doi.org/10.1299/jfst.2019jfst0025

Majdalani, J.: Vortex injection hybrid rockets. In: Fundamentals of Hybrid Rocket Combustion and Propulsion, pp. 247–276 (2007). https://doi.org/10.2514/5.9781600866876.0247.0276

Volchkov, E.P., Semenov, S.V., Terekhov, V.I.: Turbulent heat transfer at the forward face surface of a vortex chamber. J. Eng. Phys. 56(2), 109–115 (1989). https://doi.org/10.1007/BF00870560

Mcfarlane, J., Kniffen, R., Lichatowich, J.: Design and testing of AMROC’s 250,000 pound thrust hybrid motor. In: 29th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (1993). https://doi.org/10.2514/6.1993-2551

Ahn, B., Kang, H., Lee, E., Yun, Y., Kwon, S.: Design of multiport grain with hydrogen peroxide hybrid rocket. J. Propuls. Power 34(5), 1189–1197 (2018). https://doi.org/10.2514/1.B36949

Whitmore, S.A., Walker, S.D., Merkley, D.P., Sobbi, M.: High regression rate hybrid rocket fuel grains with helical port structures. J. Propuls. Power 31(6), 1727–1738 (2015). https://doi.org/10.2514/1.b35615

Karabeyoglu, A., Stevens, J., Cantwell, B.: Investigation of feed system coupled low frequency combustion instabilities In: Hybrid Rockets vol. 4, (2007). https://doi.org/10.2514/6.2007-5366

Moon, K.-H., Kim, H.-C., Lee, S.-J., Choi, W.-J., Lee, J.-P., Moon, H.-J., Sung, H.-G., Kim, J.-K.: A Study on combustion characteristic of the hybrid combustor using non-combustible diaphragm. In: Proceedings of the Korean Society of Propulsion Engineers Conference, vol. 1, pp. 258–262 (2011)

Sun, X., Tian, H., Cai, G.: Diameter and position effect determination of diaphragm on hybrid rocket motor. Acta Astronaut. 126, 325–333 (2016). https://doi.org/10.1016/j.actaastro.2016.04.029

Grosse, M.: Effect of a diaphragm on performance and fuel regression of a laboratory scale hybrid rocket motor using nitrous oxide and paraffin. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (2009). https://doi.org/10.2514/6.2009-5113

Lee, J., Rhee, S., Kim, J., Moon, H.: An analysis and reduction design of combustion instability generated in hybrid rocket motor. J. Korean Soc. Propuls. Eng. 18(4), 18–25 (2014). https://doi.org/10.6108/kspe.2014.18.4.018

Lee, J., Rhee, S., Kim, J., Moon, H., Shynkarenko, O., Simone, D., Morita, T.: Combustion instability for hybrid rocket motors with a diaphragm. In: Proceedings of the 8th European Conference for Aeronautics and Space Sciences. Madrid, Spain, 1-4 July 2019 (2019). https://doi.org/10.13009/EUCASS2019-462

Kumar, C.P., Kumar, A.: Effect of diaphragms on regression rate in hybrid rocket motors. J. Propuls. Power 29(3), 559–572 (2013). https://doi.org/10.2514/1.b34671

Dinesh, M., Kumar, R.: Utility of multiprotrusion as the performance enhancer in hybrid rocket motor. J. Propuls. Power 35(5), 1005–1017 (2019). https://doi.org/10.2514/1.B37491

Kamps, L., Sakurai, K., Saito, Y., Nagata, H.: Comprehensive data reduction for n2o/hdpe hybrid rocket motor performance evaluation. Aerospace (2019). https://doi.org/10.3390/aerospace6040045

Kumar, M., Joshi, P.C.: Regression rate study of cylindrical stepped fuel grain of hybrid rocket. Mater. Today Proc. 4(8), 8208–8218 (2017). https://doi.org/10.1016/j.matpr.2017.07.163

Sakashi, H., Saburo, Y., Kousuke, H., Takashi, S.: Effectiveness of concave-convex surface grain for hybrid rocket combustion. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012). https://doi.org/10.2514/6.2012-4107

Kumar, R., Ramakrishna, P.A.: Enhancement of hybrid fuel regression rate using a bluff body. J. Propuls. Power 30(4), 909–916 (2014). https://doi.org/10.2514/1.B34975

Fuller, J., Ehrlich, D., Lu, P., Jansen, R., Hoffman, J.: Advantages of rapid prototyping for hybrid rocket motor fuel grain fabrication. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (2011). https://doi.org/10.2514/6.2011-5821

Oztan, C., Coverstone, V.: Utilization of additive manufacturing in hybrid rocket technology: a review. Acta Astronaut. 180, 130–140 (2021). https://doi.org/10.1016/j.actaastro.2020.11.024

Hijlkema, J.: A presentation of a complete design cycle for optimised hybrid rocket motors. In: SpacePropulsion 2018, Seville (2018). https://hal.archives-ouvertes.fr/hal-01895933

Grefen, B., Becker, J., Linke, S., Stoll, E.: Design, production and evaluation of 3D-printed mold geometries for a hybrid rocket engine. Aerospace 8, 220 (2021). https://doi.org/10.3390/aerospace8080220

Lee, C., Na, Y., Lee, J.-W., Byun, Y.-H.: Effect of induced swirl flow on regression rate of hybrid rocket fuel by helical grain configuration. Aerosp. Sci. Technol. 11(1), 68–76 (2007). https://doi.org/10.1016/j.ast.2006.07.006

Mishra, P., Gupta, S.N.: Momentum transfer in curved pipes. 1. Newtonian fluids. Ind. Eng. Chem. Process Des. Dev. 18(1), 130–137 (1979). https://doi.org/10.1021/i260069a017

Nagata, H., Okada, K., San’Da, T., Akiba, R., Satori, S., Kudo, I.: New fuel configurations for advanced hybrid rockets. In: 49th International Astronautical Congress, 1998-9 (1998). https://dl.iafastro.directory/event/IAC-1998/paper/IAF-98-S.3.09/

Nagata, H., Ito, M., Maeda, T., Watanabe, M., Uematsu, T., Totani, T., Kudo, I.: Development of CAMUI hybrid rocket to create a market for small rocket experiments. Acta Astronaut. 59(1), 253–258 (2006). https://doi.org/10.1016/j.actaastro.2006.02.031

Nagata, H., Shunsuke, H., Kaneko, Y., Wakita, M., Totani, T., Uematsu, T.: Development of regression formulas for CAMUI type hybrid rockets as functions of local o/f. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference a Exhibit. American Institute of Aeronautics and Astronautics, Reston, Virginia (2010). https://doi.org/10.2514/6.2010-7117

Nagata, H., Hagiwara, S., Wakita, M., Totani, T., Uematsu, T.: Optimal fuel grain design method for CAMUI type hybrid rocket. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011 (2011). https://doi.org/10.2514/6.2011-6105

Nagata, H., Uematsu, T., Ito, K.: CAMUI type hybrid rocket as small scale ballistic flight testbed. Trans. Jpn. Soci. Aeronaut. Sp. Sci. Aerosp. Technol. Jpn. 10(ISTS28), 1–5 (2012). https://doi.org/10.2322/tastj.10.to_1_1

Nagata, H., Wakita, M., Totani, T., Uematsu, T.: Development and flight demonstration of 5 kN thrust class CAMUI type hybrid rocket. Trans. Jpn. Soci. Aeronaut. Sp. Sci. Aerosp. Technol. Jpn. 12, 1–4 (2014). https://doi.org/10.2322/tastj.12.Ta_1

Nagata, H., Ito, M.: Scale effect on solid fuel regression in CAMUI-type hybrid rocket motor. In: Saito, K., Ito, A., Nakamura, Y., Kuwana, K. (eds.) Progress in Scale Modeling, vol. II, pp. 249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10308-2_20

Nobuhara, Y., Kamps, L.T., Nagata, H.: Fuel regression characteristics of CAMUI type hybrid rocket using nitrous oxide. In: AIAA Propulsion and Energy 2021 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia (2021). https://doi.org/10.2514/6.2021-3521

Viscor, T., Kamps, L., Yonekura, K., Isochi, H., Nagata, H.: Large-scale CAMUI type hybrid rocket motor scaling, modeling, and test results. Aerospace 9(1), 1 (2022). https://doi.org/10.3390/aerospace9010001

Tian, H., Sun, X., Guo, Y., Wang, P.: Combustion characteristics of hybrid rocket motor with segmented grain. Aerosp. Sci. Technol. 46, 537–547 (2015). https://doi.org/10.1016/j.ast.2015.08.009

Tian, H., Duan, Y., Zhu, H.: Three-dimensional numerical analysis on combustion performance and flow of hybrid rocket motor with multi-segmented grain. Chin. J. Aeronaut. 33(4), 1181–1191 (2020). https://doi.org/10.1016/j.cja.2019.12.021

Bianchi, D., Nasuti, F.: Numerical analysis of nozzle material thermochemical erosion in hybrid rocket engines. J. Propuls. Power 29(3), 547–558 (2013). https://doi.org/10.2514/1.B34813

Karakas, H., Kara, O., Kahraman, B., Eren, B.N., Ozkol, I., Karabeyoglu, A.: Influence of micro-aluminum addition to paraffin-based fuels on graphite nozzle erosion rate. In: AIAA Propulsion and Energy 2020 Forum (2020). https://doi.org/10.2514/6.2020-3752

Bianchi, D., Migliorino, M.T., Rotondi, M., Kamps, L., Nagata, H.: Numerical analysis of nozzle erosion in hybrid rockets and comparison with experiments. J. Propuls. Power 1, 22 (2021). https://doi.org/10.2514/1.B38547

Narsai, P.: Nozzle erosion in hybrid rocket motors. PhD thesis, Stanford University (2016)

Marxman, G.A., Wooldridge, C.E., Muzzy, R.J.: Fundamentals of hybrid boundary-layer combustion. In: Wolfhard, H.G., Glassman, I., Green, L. (eds.) Heterogeneous Combustion. Progress in Astronautics and Rocketry, vol. 15, pp. 485–522. Elsevier, Amsterdam (1964). https://doi.org/10.1016/B978-1-4832-2730-6.50025-7

Zilliac, G., Karabeyoglu, M.: Hybrid rocket fuel regression rate data and modeling. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2006). https://doi.org/10.2514/6.2006-4504

Chidambaram, P.K., Kumar, A.: Numerical assessment of regression rate enhancement in hybrid rocket motors using multiple enhancement techniques in combination. In: 9th Asia-Pacific Conference on Combustion (2013). https://doi.org/10.13140/RG.2.1.2079.7921

Chidambaram, P.K., Kumar, A.: Combined effect of diaphragm and oxidizer swirl on regression rate in hybrid rocket motors. Def. Sci. J. 64, 21–26 (2014). https://doi.org/10.14429/dsj.64.3770