Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties

Biointerphases - Tập 7 - Trang 1-12 - 2012
C. P. Stallard1, K. A. McDonnell1, O. D. Onayemi2, J. P. O’Gara2, D. P. Dowling1
1UCD School of Mechanical and Materials Engineering, University College Dublin, Dublin 4, Ireland
2UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland

Tóm tắt

Protein adsorption is one of the key parameters influencing the biocompatibility of medical device materials. This study investigates serum protein adsorption and bacterial attachment on polymer coatings deposited using an atmospheric pressure plasma jet system. The adsorption of bovine serum albumin and bovine fibrinogen (Fg) onto siloxane and fluorinated siloxane elastomeric coatings that exhibit water contact angles (θ) ranging from superhydrophilic (θ < 5°) to superhydrophobic (θ > 150°) were investigated. Protein interactions were evaluated in situ under dynamic flow conditions by spectroscopic ellipsometry. Superhydrophilic coatings showed lower levels of protein adsorption when compared with hydrophobic siloxane coatings, where preferential adsorption was shown to occur. Reduced levels of protein adsorption were also observed on fluorinated siloxane copolymer coatings exhibiting hydrophobic wetting behaviour. The lower levels of protein adsorption observed on these surfaces indicated that the presence of fluorocarbon groups have the effect of reducing surface affinity for protein attachment. Analysis of superhydrophobic siloxane and fluorosiloxane surfaces showed minimal indication of protein adsorption. This was confirmed by bacterial attachment studies using a Staphylococcus aureus strain known to bind specifically to Fg, which showed almost no attachment to the superhydrophobic coating after protein adsorption experiments. These results showed the superhydrophobic surfaces to exhibit antimicrobial properties and significantly reduce protein adsorption.

Tài liệu tham khảo

Ratner BD, Castner DG (1997) Surface modification of polymeric biomaterials. Springer, New York Katsikogianni M, Misirlis Y (2004) Eur Cell Mater 8:37–57 Harold AS (2004) Biophys Chem 112(2–3):117–130 McClellan SJ, Franses EI (2005) Colloids Surf A 260(1–3):265–275 Zhang F, Kang ET, Neoh KG, Wang P, Tan KL (2001) Biomaterials 22(12):1541–1548 Chu PK, Chen J, Wang L, Huang N (2002) Mater Sci Eng R Rep 36(5–6):143–206 Favia P, d’Agostino R (1998) Surf Coat Technol 98(1–3):1102–1106 Schmidt DR, Waldeck H, Kao WJ (2009) Biol Interact Mater Surf, 1–18 Arima Y, Iwata H (2007) Biomaterials 28(20):3074–3082 Xie H-G, Li X-X, Lv G-J, Xie W-Y, Zhu J, Luxbacher T et al (2010) J. Biomed Mater Res Part A 92A(4):1357–1365 Sigal GB, Mrksich M, Whitesides GM (1998) J Am Chem Soc 120(14):3464–3473 Xu L-C, Siedlecki CA (2007) Biomaterials 28(22):3273–3283 Lee JH, Lee HB (1993) J Biomater Sci Polym Edition 4(5):467–481 Malmsten M (1995) Colloids Surf B 3(5):297–308 Nygren H, Alaeddin S, Lundström I, Magnusson K-E (1994) Biophys Chem 49(3):263–272 Ishizaki T, Saito N, Takai O (2010) Langmuir 26(11):8147–8154 Tamada Y, Ikada Y (1993) J Colloid Interface Sci 155(2):334–339 Yasuda T, Ishizuka K, Ezoe M (2008) IEEJ Trans Electr Electron Eng 3(3):290–296 Huang S-L, Ou C-F, Lai J-Y (1999) J Membr Sci 161(1–2):21–29 Roach P, Farrar D, Perry CC (2005) J Am Chem Soc 127(22):8168–8173 Goyal DK, Subramanian A (2010) Thin Solid Films 518(8):2186–2193 Berlind T, Tengvall P, Hultman L, Arwin H (2011) Acta Biomaterialia 7(3):1369–1378 Boss J (2000) Biomaterials and bioengineering handbook. Marcel Dekker, Inc, New York, pp 1–94 Slayter H (1983) Ann N Y Acad Sci 408(1):131–145 Foster T, Höök M (2007) Infections associated with indwelling medical devices. ASM Press, Herndon, pp 27–39 Albaugh J, O’Sullivan C, O’Neill L (2008) Surf Coat Technol 203(5–7):844–847 Feijter JAD, Benjamins J, Veer FA (1978) Biopolymers 17(7):1759–1772 Stenberg M, Nygren H (1983) Le Journal de Physique Colloques 44(C10):83–86 Stallard C, McDonnell K, Donegan M, Dowling DP (2010) Evaluation of spectroscopic ellipsometry for the measurement of BSA protein adhesion on atmospheric plasma modified surfaces. ECNF conference March 22–25, Liege, Belgium Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ (2002) J Bacteriol 184(19):5457 O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A et al (2008) J Bacteriol 190(11):3835 Houston P, Rowe SE, Pozzi C, Waters EM, O’Gara JP (2011) Infect Immun 79(3):1153 O’Neill L, Herbert PAF, Stallard C, Dowling DP (2010) Plasma Process Polym 7(1):43–50 Ramamoorthy A, Rahman M, Mooney DA, Don MacElroy JM, Dowling DP (2009) Plasma Process Polym 6(S1):S530–S536 Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12(9):2125–2127 Schmidt-Szalowski K (2000) Plasmas Polym 5(3):173–190 Yang S-H, Liu C-H, Su C-H, Chen H (2009) Thin Solid Films 517(17):5284–5287 Seitz R, Brings R, Geiger R (2005) Appl Surf Sci 252(1):154–157 Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry. Wiley, New York Lok BK, Cheng Y-L, Robertson CR (1983) J Colloid Interface Sci 91(1):104–116 Yaseen M, Salacinski H, Seifalian A, Lu J (2008) Biomed Mater 3:034123 Kumar V, Pulpytel J, Rauscher H, Mannelli I, Rossi F, Arefi-Khonsari F (2010) Fluorocarbon coatings via plasma enhanced chemical vapor deposition of 1H,1H,2H,2H-perfluorodecyl Acrylate-2, morphology, wettability and antifouling characterization. WILEY-VCH Verlag, pp 926–938 Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ (2008) Lab Chip 8(4):582–586 Khorasani MT, Mirzadeh H (2004) In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. Wiley Subscription Services, Inc., A Wiley Company, New York, pp 2042–2047 Crick CR, Ismail S, Pratten J, Parkin IP (2011) Thin Solid Films 519(11):3722–3727 O’Gara JP (2007) FEMS Microbiol Lett 270(2):179–188