Evaluation of Estimation Methods for Monthly Reference Evapotranspiration in Arid Climates

Mahtab Nazari1, M. R. Chaichi2, H. Kamel3, Mark E. Grismer4, Seyed Mohammad Moein Sadeghi3
1Department of Plant Science, McGill University Canada, H9X 3V9, Ste-Anne-de-Bellevue, Quebec, Canada
2Department of Plant Science, California State Polytechnic University, 91768, Pomona, CA, United States
3Department of Forestry and Forest Economics, University of Tehran Iran, 261, Karaj, Iran
4Department of Land, Air, and Water Resources, University of California, 95616-8627, Davis, CA, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Control, 1974, vol. 19, pp. 716–723.

Alexandris, S., Kerkides, P., and Liakatas, A., Daily reference evapotranspiration estimates by the Copais approach, Agric. Water Manage., 2006, vol. 82, pp. 371–386.

Alexandris, S., Stricevic, R., and Petkovic, S., Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman–Monteith formula, Eur. Water, 2008, vol. 21, pp. 17–28.

Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., Crop evapotranspiration, in FAO Irrigation and Drainage, Rome: Food Agric. Org., 1998.

Allen, R.G., Clemmens, A.J., Burt, C.M., Solomon, K., and O’Halloran, T., Prediction accuracy for project wide evapotranspiration using crop coefficients and reference evapotranspiration, J. Irrig. Drainage Eng., 2005, vol. 131, pp. 24–36.

Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Beselga, J., Smith, M., Pereira, L.S., Raes, D., Perrier, A., Alves, I., Walter, I., and Elliott, R., A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman–Monteith method, Agric. Water Manage., 2006, vol. 81, pp. 1–22.

Attarod, P., Kheirkhah, F., Khalighi Sigaroodi, S., and Sadeghi, S.M.M., Sensitivity of reference evapotranspiration to global warming in the Caspian region, north of Iran, J. Agric. Sci. Technol., 2015a, vol. 17, pp. 869–883.

Attarod, P., Sadeghi, S.M.M., Fathizadeh, O., Motahari, M.A., Rahbari Sisakht, S., Ahmadi, M.T., and Bayramzadeh, V., Temperature- and radiation based methods against the standard FAO Penman- Monteith for estimating the reference evapotranspiration (ET0) in Gorgan, J. For. Wood Prod., 2015b, vol. 68, pp. 359–369.

Attarod, P., Rostami, F., Dolatshahi, A., Sadeghi, S.M.M., Zahedi Amiri, G., and Bayramzadeh, V., Do changes in meteorological parameters and evapotranspiration affect declining oak forests of Iran? J. For. Sci., 2016, vol. 62, pp. 553–561.

Bautista, F., Bautista, D., and Delgado-Carranza, C., Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications, Atmósfera, 2009, vol. 22, pp. 331–348.

Berti, A., Tardivo, G., Chiaudani, A., Rech, F., and Borin, M., Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy, Agric. Water Manage., 2014, vol. 140, pp. 20–25.

Drexler, J.Z., Snyder, R.L., Spano, D., and Paw, K.T., A review of models and micrometeorological methods used to estimate wetland evapotranspiration, Hydrol. Process., 2004, vol. 18, pp. 2071–2101.

Droogers, P. and Allen, R.G., Estimating reference evapotranspiration under inaccurate data conditions, Irrig. Drainage Syst., 2002, vol. 16, pp. 33–45.

Enku, T. and Melesse, A.M., A simple temperature method for the estimation of evapotranspiration, Hydrol. Process., 2013, vol. 28, pp. 2945–2960.

Gao, F., Feng, G., Ouyang, Y., Wang, H., Fisher, D., Adeli, A., and Jenkins, J., Evaluation of reference evapotranspiration methods in arid, semiarid, and humid regions, J. Am. Water Resour. Assoc., 2017, vol. 53, pp. 791–808.

Gocic, M. and Trajkovic, S., Software for estimating reference evapotranspiration using limited weather data, Comput. Electron. Agric., 2010, vol. 71, pp. 158–162.

Hargreaves, G.H., Moisture availability and crop production, Trans. ASAE, 1975, vol. 18, pp. 980–984.

Hargreaves, G.H. and Allen, R.G., History and evaluation of Hargreaves evapotranspiration equation, J. Irrig. Drainage Eng., 2003, vol. 129, pp. 53–63.

Hargreaves, G.H. and Samani, Z.A., Reference crop evapotranspiration from temperature, Appl. Eng. Agric., 1985, vol. 1, pp. 96–99.

Irmak, S., Irmak, A., Allen, R.G., and Jones, J.W., Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates, J. Irrig. Drainage Eng., 2003, vol. 129, pp. 336–347.

Jensen, M.E. and Haise, H.R., Estimation of evapotranspiration from solar radiation, J. Irrig. Drainage Div., 1963, vol. 89, pp. 15–41.

Jensen, M.E., Burman, R.D., and Allen, R.G., Evapotranspiration and Irrigation Water Requirements, New York: Am. Soc. Civ. Eng., 1990, p. 332.

Kisi, O., Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate, J. Irrig. Drainage Eng., 2013, vol. 140.

López-Urrea, R., Martín de Santa Olalla, F., Fabeiro, C., and Moratalla, A., Testing evapotranspiration equations using lysimeter observations in a semiarid climate, Agric. Water Manage., 2006, vol. 85, pp. 15–26.

McElrone, A.J., Shapland, T.M., Calderon, A., Fitzmaurice, L., Paw, K.T., and Snyder, R.L., Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data, J. Visualized Exp., 2013, vol. 82.

Nash, J.E. and Sutcliffe, J.V., River flow forecasting through conceptual models 1: a discussion of principles, J. Hydrol., 1970, vol. 10, pp. 282–290.

Ravazzani, G., Corbari, C., Morella, S., Gianoli, P., and Mancini, M., Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine River basins, J. Irrig. Drainage Eng., 2012, vol. 138, pp. 592–599.

Sadeghi, S.M.M., Attarod, P., van Stan, J.T., Pypker, T.G., and Dunkerley, D., Efficiency of the reformulated Gash’s interception model in semiarid afforestations, Agric. For. Meteorol., 2015, vol. 201, pp. 76–85.

Sadeghi, S.M.M., van Stan, J.T., Pypker, T.G., and Friesen, J., Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill, tree of heaven), Agric. For. Meteorol., 2017, vol. 240, pp. 10–17.

Salih, A.M. and Sendil, U., Evapotranspiration under extremely arid climates, J. Irrig. Drainage Eng., 1984, vol. 110, pp. 289–303.

Sentelhas, P.C., Gillespie, T.J., and Santos, E.A., Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada, Agric. Water Manage., 2010, vol. 97, pp. 635–644.

Tabari, H., Grismer, M.E., and Trajkovic, S., Comparative analysis of 31 reference evapotranspiration methods under humid conditions, Irrig. Sci., 2013, vol. 31, pp. 107–117.

Trajkovic, S., Hargreaves versus Penman–Monteith under humid condition, J. Irrig. Drainage Eng., 2007, vol. 133, pp. 38–42.

Trajkovic, S. and Stojnic, V., Effect of wind speed on accuracy of Turc method in a humid climate, Facta Univ.,Ser.: Arch. Civ. Eng., 2007, vol. 5, pp. 107–113.

Turc, L., Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, Ann. Agron., 1961, vol. 12, pp. 13–49.

Valiantzas, D.J., Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited data, J. Hydrol., 2013, vol. 505, pp. 13–23.