Evaluation of Environment Exposure Potential of Atrazine Herbicide and Synthesis of Polymeric Controlled Release Pesticide Formulations

Atul Gupta1, Abhishek Dhiman2
1Department of Chemistry, Govt. College Ghumarwin, Bilaspur Himachal Pradesh, Ghumarwin, India
2Department of Applied Science, Mahatma Gandhi Government Engineering College Kotla, Jeori, Himachal Pradesh, Rampur, India

Tóm tắt

A thorough understanding of pesticide fate in soil and replacement of traditional pesticide formulations with polymeric controlled release pesticide formulations may provide a preventive approach for safer and more effective application of pesticides in the field. In this direction, the present study discusses the soil adsorption study of atrazine herbicide on Indian soil and synthesis of polymeric controlled release formulation based on Azadirachta indica (Neem) (AI) leaf powder and sodium alginate. The value of Ground Ubiquity Score (GUS) for atrazine herbicide has been observed 2.58 which classifies it as a transition pesticide in terms of ground water contamination with higher Environment Exposure Potential (EEP) in Indian soil. Polymeric controlled release pesticide formulations (CRPFs) were synthesized by ionotropic gelation method with three different crosslinking ions i.e. Ca2+, Ba2+, and Al3+. These CRPFs have been characterized by FTIR, SEM-EDAX and TGA. Polymeric CRPFs released the herbicide in controlled manner for a period of 300 h and followed non-Fickian diffusion mechanism. AI-Alginate-Ca beads showed maximum cumulative release 14.99 mg/g in 300 h, followed by BaCl2 and AlCl3 crosslinked beads. The release study showed that the Polymeric CRPFs can be effective in controlling the release and adverse effects of atrazine in the environment.

Từ khóa


Tài liệu tham khảo

R. Shah, Emerging Contam. 4, 1 (2020). N. Urseler, R. Bachetti, F. Biolé, V. Morgante, and C. Morgante. Sci. Total Environ. 852, 158498 (2022). S. Mukherjee, K. Keswani, P. Nath, and S. Paul, Environ. Qual. Manag. https://doi.org/10.1002/tqem.21984 M. Tudi, H. D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, and D. T. Phung, Int. J. Environ. Res. Public Health 18(3), 1112 (2021). D. K. Sharma, A. Gupta, and S. Kumar, Int. J. Environ. Sci. 6(5), 726 (2016). A. Singh, N. Dhiman, A. K. Kar, D. Singh, M. P. Purohit, D. Ghosh, and S. Patnaik, J. Hazard Mater. 385, 121525 (2020). N. Li, C. Sun, J. Jiang, A. Wang, C. Wang, Y. Shen, B. Huang, C. An, B. Cui, X. Zhao, and C. Wang, J. Agric. Food Chem. 69(43), 12579 (2021). E. V. R. Campos, J. L. de Oliveira, L. F. Fraceto, and B. Singh, Agron. Sustainable Dev. 35, 47 (2015). J. Zhou, G. Liu, Z. Guo, M. Wang, C. Qi, G. Chen, X. Huang, S. Yan, and D. Xu, Chem. Eng. J. 140167 (2022). I. M. Militao, F. Roddick, R. Bergamasco, and L. Fan, Env. Technol. Innov. 28, 102761 (2022). R. Kesari and V. K. Gupta, Talanta 47(5), 1085 (1998). E. Papa, S. Castiglioni, P. Gramatica, V. Nikolayenko, O. Kayumov, and D. Calamari, Water Res. 38(16), 3485 (2004). D. Bhardwaj, P. Sharma, and R. Tomar, Ind. J. Chem. 46A, 1796 (2007). M. I. Al-Wabel, G. Abdel-Nasser, A. M. Al-Turki, and M. H. El-Saeid, J. Appl. Sci. 10(16), 1740 (2010). J. M. Dabrowski, J. M. Shadung, and V. Wepener, Environ. Int. 62, 31 (2014). B. Singh and N. Sharma, Polym. Degrad. Stab. 93(3), 561 (2008). V. Kumar, A. A. Ghfar, and S. Pandey, J. Anal. Sci. Technol. 14(1), 1 (2023). P. L. Ritger and N. A. Peppas, J. Control. Release 5(1), 23 (1987). P. L. Ritger and N. A. Peppas, J. Control. Release 5(1), 37 (1987). P. Somasundaran and D. Wang, in Solution Chemistry: Minerals and reagents, Ed. by B. A. Wills (Elsevier, The Netherlands, 2006), pp. 73–75. M. Al Kuisi, Environ. Geol. 42(6), 666 (2002). M. Jaya, S. B. Singh, G. Kulshrestha, S. Arya, Pestic. Res. J. 21(1), 101 (2009). L. Nemeth-Konda, G. Füleky, G. Morovjan, and P. Csokan, Chemosphere 48(5), 545 (2002). O. Şanlı and N. Işıklan, J. Appl. Polym. Sci. 102(5), 4245 (2006). Y. Xu, J. Guo, Y. Liu, Q. Yang, X. Zhang, and F. Guan, Mater. Des. 214, 110424 (2022). C. Mohammed, L. Lalgee, M. Kistow, N. Jalsa, and K. Ward, Carbohydr. Polym. Technol. Appl. 3, 100203 (2022). O. O. Sadare, A. O. Ayeni, and M. O. Daramola, J. Saudi Chem. Soc. 26(2), 101433 (2022). A. A. Said and R. M. Hassan, Polym. Degrad. Stab. 39(3), 393 (1993). M. J. John, Curr. Res. Green Sustain. Chem. 5, 100319 (2022). M. Fernández-Pérez, F. Flores-Céspedes, E. González-Pradas, M. Villafranca-Sánchez, S. Pérez-García, and F. J. Garrido-Herrera, J. Agric. Food Chem. 52(12), 3888 (2004). J. S. Kjesbu, D. Zaytseva-Zotova, S. Sämfors, P. Gatenholm, C. Troedsson, E. M. Thompson, and B. L. Strand, Carbohydr. Polym. 286, 119284 (2022). T. Wu, K. Zhao, C. Zhang, T. Zhong, Z. Li, Z. Bao, Y. Gao, F. Du, ACS Appl. Mater. Interfaces 14(49), 55062 (2022).