Evaluation of Drought, Wet Events, and Climate Variability Impacts on Maize Crop Yields in East Africa During 1981–2017

International Journal of Plant Production - Tập 16 Số 1 - Trang 41-62 - 2022
Moses Ojara1, Yunsheng Li1, Hassen Babaousmail2, Alex Kimume Sempa3, Brian Ayugi1, Bob Alex Ogwang3
1Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
2Binjiang College of Nanjing University of Information Science and Technology, Wuxi, Jiangsu, China
3Diretorate of Training and Research, Uganda National Meteorological Authority, Plot 21, 28 Port Bell Rd, P.O. Box 7025, Kampala, Uganda

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adhikari, U., Nejadhashemi, A. P., & Woznicki, S. A. (2015). Climate change and eastern Africa : A review of impact on major crops. Food Energy Security, 4, 110–132. https://doi.org/10.1002/fes3.61

Aguilar, C., Polo, M. J., & Dynamics, F. (2011). Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale. Hydrology and Earth System Sciences, 15, 2495–2508. https://doi.org/10.5194/hess-15-2495-2011

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO: Roma, Italia. https://www.fao.org/3/x0490e/x0490e00.htm. Accessed 15 Dec 2021

Amissah-arthur, A., Jagtap, S., & Rosenzweig, C. (2002). Spatio-temporal effects of El-Nino events on rainfall and spatio-temporal effects of el ni no maize yield in Kenya. International Journal of Climatology, 22, 1849–1860. https://doi.org/10.1002/joc.858

Aylward, C, Biscaye, P., Harris, K.P., Lafayette, M., True, Z., Anderson, C.L., & Reynolds, T. (2015). Maize yield trends and agricultural policy in East Africa macro-level literature review for six countries. EPAR technical report no. 310. Retrieved from November 30, 2021, from https://epar.evans.uw.edu/sites/default/files/EPAR_UW_310_National-Level_Maize%20Yield%20Trends_5.31.16.pdf.

Ayugi, B. O., & Tan, G. (2018). Recent trends of surface air temperatures over Kenya from 1971 to 2010. Meteorology and Atmospheric Physics, 131, 1401–1413. https://doi.org/10.1007/s00703-018-0644-z

Ayugi, B., Tan, G., Rouyun, N., Zeyao, D., Ojara, M., Mumo, L., Babaousmail, H., & Ongoma, V. (2020). Evaluation of meteorological drought and flood scenarios over Kenya, East Africa. Water (switzerland), 11, 307. https://doi.org/10.3390/atmos11030307

Ayugi, B., Ngoma, H., Babaousmail, H., Karim, R., Iyakaremye, V., Liam Kam Sian, K. T. C., & Ongoma, V. (2021). Evaluation and projection of mean surface temperature using CMIP6 models over East Africa. Journal of African Earth Sciences, 181, 104226. https://doi.org/10.1016/j.jafrearsci.2021.104226

Ayana, E. K., Ceccato, P., Fisher, J. R. B., & Defries, R. (2016). Examining the relationship between environmental factors and conflict in pastoralist areas of East Africa. Science of the Total Environment, 557–558, 601–611. https://doi.org/10.1016/j.scitotenv.2016.03.102

Balint, Z., Mutua, F., Muchiri, P., & Omuto, C. T. (2013). Monitoring drought with the combined drought index in Kenya. Developments in earth surface processes (1st ed., Vol. 16, pp. 341–356). Elsevier. https://doi.org/10.1016/B978-0-444-59559-1.00023-2

Barron, J., Rockström, J., Gichuki, F., & Hatibu, N. (2003). Dry spell analysis and maize yields for two semi-arid locations in east Africa. Agricultural and Forest Meteorology, 117, 23–37. https://doi.org/10.1016/S0168-1923(03)00037-6

Barasa, B., Kakembo, V., Mugagga, F., & Egeru, A. (2015). Comparison of extreme weather events and streamflow from drought indices and a hydrological model in River Malaba, Eastern Uganda. International Journal of Environmental Studies, 70, 932–943. https://doi.org/10.1080/00207233.2013.862463

Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited : Parameter fitting, evapotranspiration models, tools, datasets, and drought monitoring. International Journal of Climatology, 3023, 3001–3023. https://doi.org/10.1002/joc.3887

Behera, S.K, Luo, J.J, Masson, S., Delecluse, P., Gualdi, S., Navarra, A., Yamagata, T. (2005). Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Clim. 18, 4514–4530. https://doi.org/10.1175/JCLI9018.1

Bjornlund, V., Bjornlund, H., & van Rooyen, A. F. (2020). Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world—a historical perspective. International Journal of Water Resources Development, 36, 20–53. https://doi.org/10.1080/07900627.2020.1739512

Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58, 11–27. https://doi.org/10.1016/0022-1694/82/0000-0000/$02.75

Brown, E., Sutcliffe, J. V., Brown, E., & John, V. (2013). The water balance of Lake Kyoga, Uganda. Hydrological Sciences Journal, 58, 341–353. https://doi.org/10.1080/02626667.2012.753148

Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5, 345–360. https://doi.org/10.1007/s12571-013-0256-x

Camberlin, P., & Philippon, N. (2002). The East African March-May rainy season: Associated atmospheric dynamics and predictability over the 1968–97 period. Journal of Climate, 15, 1002–1019. https://doi.org/10.1175/1520-0442(2002)015%3C1002:TEAMMR%3E2.0.CO;2

Costa, A. C., & Soares, A. (2009). Homogenization of climate data: Review and new perspectives using geostatistics. Mathematical Geosciences, 41, 291–305. https://doi.org/10.1007/s11004-008-9203-3

Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P., & Grab, S. W. (2015). Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207, 1–10. https://doi.org/10.1016/j.agrformet.2015.03.005

Dai, A. (2016). Future warming patterns linked to today’s climate variability. Science and Reports, 6, 6–11. https://doi.org/10.1038/srep19110

Dinku, T. (2019). Challenges with availability and quality of climate data in Africa. In A. M. Melesse, W. Abtew, & G. Senay (Eds.), Extreme hydrology and climate variability; monitoring, modelling, adaptation and mitigation (pp. 71–80). Elsevier.

Dinku, T., Thomson, M. C., Cousin, R., Corral, J., Hansen, J., & Connor, S. J. (2017). Enhancing National Climate Services (ENACTS) for development in Africa. Climate and Development, 10(7), 664–672. https://doi.org/10.1080/17565529.2017.1405784

Djaman, K., Balde, A. B., Sow, A., Muller, B., Irmak, S., Diaye, M. K. N., Manneh, B., Moukoumbi, Y. D., Futakuchi, K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under Sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139–159. https://doi.org/10.1016/j.ejrh.2015.02.002

Doss, C.R., Mwangi, W.M., Verkuijl, H., & De Groote, H. (2003). Adoption of maize and wheat technologies in Eastern Africa: A synthesis of the findings of 22 case studies. CIMMYT economics working paper 03-01. CIMMYT

Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16, 33–45. https://doi.org/10.1023/A:1015508322413

Epule, T. E., Ford, J. D., Lwasa, S., & Lepage, L. (2017). Vulnerability of maize yields to droughts in Uganda. Water, 9(3), 181. https://doi.org/10.3390/w9030181

Edreira, J. I. R., Guilpart, N., Sadras, V., Cassman, K. G., Ittersum, M. K. V., Schils, R. L. M., & Grassini, P. (2018). Agricultural and forest meteorology water productivity of rainfed maize and wheat: A local to a global perspective. Agricultural and Forest Meteorology, 259, 364–373. https://doi.org/10.1016/j.agrformet.2018.05.019

Eslamian, S., Ostad-ali-askari, K., Singh, V. P., Dalezios, N. R., Ghane, M., Yihdego, Y., & Matouq, M. (2017). A review of drought indices. International Journal of Constructive Research in Civil Engineering, 3, 48–66. https://doi.org/10.20431/2454-8693.0304005

Farmer, W., Strzepek, K., Schlosser, C.A., Droogers, P., & Xiang, G. (2011). A method for calculating reference evapotranspiration on daily time scales. Joint program report series report 195. p. 21. Retrieved from http://globalchange.mit.edu/publication/15554.

Food and Agricultural Organization of the United Nations Statistics Division, FAOSTAT. (2016). http://faostat3.fao.org/download/Q/QC/E. Accessed 5 July 2020

Ford, J. D., Keskitalo, E. C. H., Smith, T., Pearce, T., Berrang-ford, L., Duerden, F., & Smit, B. (2010). Case study and analogue methodologies in climate change vulnerability research. Wires Climate Change, 1, 374–392. https://doi.org/10.1002/wcc.48

Freitas, L., Pereira, M. G., Caramelo, L., Mendes, M., & Nunes, L. F. (2013). Homogeneity of monthly air temperature in Portugal with HOMER and MASH. Idojaras, 117, 69–90.

Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and warming oceans threaten food security and warming oceans threaten food security. Food Security, 1, 271–289. https://doi.org/10.1007/s12571-009-0026-y

Funk, C., Senay, G., Asfaw, A., & Verdin, J. (2005). Recent drought tendencies in Ethiopia and equatorial-subtropical eastern Africa, Famine Early Warning System Network. Retrieved November 30, 2021, from https://rmportal.net/library/content/recent-drought-tendencies-in-ethiopia-and-equatorial-subtropical-eastern-africa/at_download/file.

Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., & Hoell, A. (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. PNAS, 105(32), 11081–11086. https://doi.org/10.1073/pnas.0708196105

Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2018). Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrology and Earth System Sciences, 22, 4547–4564. https://doi.org/10.5194/hess-22-4547-2018

Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Scientific Reports, 9, 11376. https://doi.org/10.1038/s41598-019-47933-8

Gu, G., & Adler, R. F. (2013). Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: Global warming and/or pacific decadal variability? Climate Dynamics, 40, 3009–3022. https://doi.org/10.1007/s00382-012-1443-8

Haile, G. G., Tang, Q., Sun, S., Huang, Z., Zhang, X., & Liu, X. (2019). Droughts in East Africa: Causes, impacts, and resilience. Earth-Science Reviews, 193, 146–161. https://doi.org/10.1016/j.earscirev.2019.04.015

Haile, G. G., Tang, Q., Hosseini-Moghari, S., Liu, X., Gebremicael, T. G., Leng, G., Kebede, A., Xu, X., & Yun, X. (2020). Projected impacts of climate change on drought patterns over East Africa. Earth’s Future, 8(7), e2020EF001502. https://doi.org/10.1029/2020EF001502

Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204, 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

Indeje, M., Semazzi, F. H. M., & Ogallo, L. J. (2000). ENSO signals in East African rainfall seasons. International Journal of Climatology, 46, 19–46. https://doi.org/10.1002/(SICI)1097-0088(200001)20:1%3c19::AID-JOC449%3e3.0.CO;2-0

IPCC. (2014). In Core Writing Team, R. K. Pachauri & L. A. Meyer (Eds.), Climate change 2014: Synthesis report. Contribution of Working Groups I, II, and III to the fifth Assessment report of the intergovernmental panel on climate change (p. 151). IPCC.

Jain, V. K., Pandey, R. P., Jain, M. K., & Byun, H. (2015). Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather and Climate Extremes, 8, 1–11. https://doi.org/10.1016/j.wace.2015.05.002

Kaizzi, K. (2016) Global yield gap atlas: Uganda. Retrieved March 3, 2021, from http://www.yieldgap.org/gygamaps/excel/GygaUganda.xlsx.

Kendall, M. G. (1975). Rank correlation methods (4th ed.). Griffin.

Kizza, M., Rodhe, A., Xu, C.-Y., Ntale, H. K., & Halldin, S. (2009). Temporal rainfall variability in the Lake Victoria Basin in East Africa during the twentieth century. Theoretical and Applied Climatology, 98, 119–135. https://doi.org/10.1007/s00704-008-0093-6

Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the US great plains agricultural production. Scientific Reports. https://doi.org/10.1038/s41598-018-21848-2

Kundzewicz, Z. W., & Radziejewski, M. (2006). Methodologies for trend detection. In S. Demuth (Ed.), Climate variability and change-hydrological impacts (pp. 538–550). International Association of Hydrological Sciences.

López-moreno, J. I., Vicente-serrano, S. M., Zabalza, J., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., & Morán-Tejeda, E. (2013). Hydrological response to climate variability at different time scales: A study in the Ebro basin. Journal of Hydrology, 477, 175–188. https://doi.org/10.1016/j.jhydrol.2012.11.028

Lorenzo-Lacruz, J., Morán-Tejeda, E., Vicente-Serrano, S. M., & López-moreno, J. I. (2013). Streamflow droughts in the Iberian Peninsula between 1945 and 2005: Spatial and temporal patterns. Hydrology and Earth System Sciences, 17, 119–134. https://doi.org/10.5194/hess-17-119-2013

Lyon, B., & Dewitt, D. G. (2012). A recent and abrupt decline in the East African long rains. Geophysical Research Letters, 39, 1–5. https://doi.org/10.1029/2011GL050337

Macleod, D., & Caminade, C. (2019). The moderate impact of the 2015 El-Niño over East Africa and its representation in seasonal reforecasts. Journal of Climate, 32, 7989–8001. https://doi.org/10.1175/JCLI-D-19-0201.1

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

Masih, I., Maskey, S., Mussa, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent : A geospatial and long-term perspective. Hydrology and Earth System Sciences, 18, 3635–3649. https://doi.org/10.5194/hess-18-3635-2014

Mchugh, M. J. (2004). Near-surface zonal flow and East African precipitation receipt during austral summer. Journal of Climate, 17, 4070–4079. https://doi.org/10.1175/1520-0442(2004)017%3c4070:NZFAEA%3e2.0.CO;2

Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. AMS 8th conference on applied climatology Jan17-23, 1993, Anaheim CA (pp. 179–184)

Mehdi, B, Herrnegger, M, Dekens, J, Crerar, S., & Schulz, K. (2018). Assessment of the current and future available water resources under different climate scenarios in the Lake Bunyonyi catchment. Retrieved November 27, 2021, from https://napglobalnetwork.org/resource/assessment-of-current-and-future-available-water-resources-uganda/.

Mugume, I., Mesquita, M. S., Bamutaze, Y., Ntwali, D., Waiswa, D., Reuder, J., & Twinomuhangi, R. (2018). Improving quantitative rainfall prediction using ensemble analogues in the tropics: A case study of Uganda. Atmosphere, 9(9), 328. https://doi.org/10.3390/atmos9090328

Mumo, L., Yu, J., & Fang, K. (2018). Assessing impacts of seasonal climate variability on maize yield in Kenya. International Journal of Plant Production, 12, 297–307. https://doi.org/10.1007/s42106-018-0027-x

Mutai, C. C., Ward, M. N., & Colman, A. W. (1998). Towards the prediction of the East Africa short rains based on sea-surface temperature–atmosphere coupling. International Journal of Climatology, 18, 975–997. https://doi.org/10.1002/(SICI)1097-0088(199807)18:9%3c975::AID-JOC259%3e3.0.CO;2-U

Mwangi, E., Wetterhall, F., Dutra, E., Di Giuseppe, F., & Pappenberger, F. (2014). Forecasting droughts in East Africa. Hydrology and Earth System Sciences, 18, 611–620. https://doi.org/10.5194/hess-18-611-2014

Nalbantis, I., & Tsakiris, G. (2008). Assessment of hydrological drought revisited. Water Resources Management, 23(5), 881–897. https://doi.org/10.1007/s11269-008-9305-1

Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1), 69–88. https://doi.org/10.1016/j.agrformet.2005.07.012

Ngoma, H., Ayugi, B., Babaousmail, H., & Karim, R. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. International Journal of Climatology, 41(9), 4743–4768. https://doi.org/10.1002/joc.7098

Nicholson, S.E. (1996). A review of climate dynamics and climate variability in Eastern Africa, In The limnology, climatology, and paleoclimatology of the East African Lakes. pp. 25–56.

Nicholson, S. E. (2017). Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics, 55, 590–635. https://doi.org/10.1002/2016RG000544

Nicholson, S. E., & Kim, J. (1997). The relationship of the El Nino oscillation to African rainfall. International Journal of Climatology, 17, 117–135. https://doi.org/10.1002/(SICI)1097-0088(199702)17:2%3c117::AID-JOC84%3e3.0.CO;2-O

Ntale, H. K., & Gan, T. Y. (2004). East African rainfall anomaly patterns in association with El Niño/southern oscillation. Journal of Climate, 9, 257–268. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(257)

Ogwang, B. A., Chen, H., Li, X., & Gao, C. (2014). The influence of topography on East African October to December climate: Sensitivity experiments with RegCM4. Advances in Meteorology. https://doi.org/10.1155/2014/143917

Ogwang, B. A., Chen, H., Tan, G., Ongoma, V., & Ntwali, D. (2015a). Diagnosis of East African climate and the circulation mechanisms associated with extreme wet and dry events: A study based on RegCM4. Arabian Journal of Geosciences, 8, 10255–10265. https://doi.org/10.1007/s12517-015-1949-6

Ogwang, B. A., Ongoma, V., Xing, L., & Ogou, F. K. (2015b). Influence of mascarene high and indian ocean dipole on east African extreme weather events. Geographica Pannonica, 19, 64–72. https://doi.org/10.18421/GP19.02-05

Ogwang, B. A., Ongoma, V., & Gitau, W. (2016). Contributions of the Atlantic ocean to June-August rainfall over Uganda and Western Kenya. Journal of the Earth and Space Physics, 41, 131–140. https://doi.org/10.22059/jesphys.2015.53833

Ojara, M. A., Lou, Y., Aribo, L., Namumbya, S., & Uddin, M. J. (2020). Dry spells and probability of rainfall occurrence for Lake Kyoga Basin in Uganda, East Africa. Nature Hazards, 100, 493–514. https://doi.org/10.1007/s11069-019-03822-x

Omolo, N. A. (2010). Gender and climate change-induced conflict in pastoral communities: A Case study of Turkana in north-western Kenya. African Journal on Conflict Resolution, 10, 81–102. https://doi.org/10.4314/ajcr.v10i2.63312

Ongoma, V., & Chen, H. (2017). Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129, 131–144. https://doi.org/10.1007/s00703-016-0462-0

Ongoma, V., Chen, H., Gao, C., & Sagero, P. O. (2017). Variability of temperature properties over Kenya based on observed and reanalyzed datasets. Theoretical and Applied Climatology, 133, 1175–1190. https://doi.org/10.1007/s00704-017-2246-y

Ongoma, V., Chen, H., & Omony, G. W. (2018). Variability of extreme weather events over equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theoretical and Applied Climatology, 131, 295–308. https://doi.org/10.1007/s00704-016-1973-9

Onyutha, C., Asiimwe, A., Ayugi, B., Ngoma, H., Ongoma, V., & Tabari, H. (2021). Observed and future precipitation and evapotranspiration in water management zones of Uganda: CMIP6 projections. Atmosphere, 12(7), 887. https://doi.org/10.3390/atmos12070887

Owiti, Z., & Zhu, W. (2012). Spatial distribution of rainfall seasonality over East Africa. Journal of Geography and Regional Planning, 5, 409–421. https://doi.org/10.5897/JGRP12.027

Palmer, W.C. (1965). Meteorological drought. Research paper no. 45, US Weather Bureau.

Palmer, W. C. (1968). Keeping track of crop moisture conditions, nationwide: The Crop Moisture Index. Weatherwise, 21, 156–161.

Polong, F., Chen, H., Sun, S., & Ongoma, V. (2019). Temporal and spatial development of the standard precipitation evapotranspiration index ( SPEI ) in the Tana River Basin, Kenya. Theoretical and Applied Climatology, 138, 777–792. https://doi.org/10.1007/s00704-019-02858-0

Ravazzani, G., Corbari, C., Morella, S., Gianoli, P., & Mancini, M. (2012). Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine River Basins. Journal of Irrigation and Drainage Engineering, 138, 592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453

Rigden, A. J., Ongoma, V., & Huybers, P. (2020). Kenyan tea is made with heat and water: how will climate change influence its yield ? Kenyan tea is made with heat and water: how will climate change influence its yield? Environmental Research Letters, 15, 044003.

Sabrija, Č, Uzunovi, M., Žurovec, J., & Žurovec, O. (2017). Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research, 5, 309–324. https://doi.org/10.1016/j.iswcr.2017.07.002

Santpoort, R. (2020). the drivers of maize area expansion in Sub-Saharan Africa. How policies to boost maize production overlook the interests of smallholder farmers. Land, 9, 68. https://doi.org/10.3390/land9030068

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379–1389. https://doi.org/10.2307/2285891

Sherman, M., & Ford, J. D. (2013). Market engagement and food insecurity after a climatic hazard. Global Food Security, 2, 144–155. https://doi.org/10.1016/j.gfs.2013.08.003

Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5, 291–317. https://doi.org/10.1007/s12571-013-0263-y

Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79. https://doi.org/10.1016/j.wace.2014.04.004

Spinage, C. A. (2012). The changing climate of Africa Part I: Introduction and Eastern Africa. African ecology—benchmarks and historical perspectives (pp. 57–140). Springer. https://doi.org/10.1007/978-3-642-22872-8

Tabari, H., Grismer, M. E., & Trajkovic, S. (2013). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31, 107–117. https://doi.org/10.1007/s00271-011-0295-z

Tan, G., Ayugi, B., Ngoma, H., & Ongoma, V. (2020). Projections of future meteorological drought events under representative concentration pathways (RCPs) of CMIP5 over Kenya, East Africa. Atmospheric Research, 246, 105112. https://doi.org/10.1016/j.atmosres.2020.105112

Tarpley, J. D., Schneider, S. R., & Money, R. L. (1984). Global vegetation indices from the NOAA-7 meteorological satellite. Journal of Climate and Applied Meteorology, 23, 491–494. https://doi.org/10.1175/1520-0450(1984)023%3C0491:GVIFTN%3E2.0.CO;2

ten Berge, H. F. M., Hijbeek, R., Loon, M. P., Van Rurinda, J., Tesfaye, K., Zingore, S., Craufurd, P., Heerwaarden, J., Van Brentrup, F., Schröder, J. J., Boogaard, H. L., de Groot, H. L. E., & van Ittersum, M. K. (2019). Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23, 9–21. https://doi.org/10.1016/j.gfs.2019.02.001

Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, Mathematics (I) and (II) (pp. 386–392, 521–525).

Törnros, T., & Menzel, L. (2014). Addressing drought conditions under current and future climates in the Jordan River region. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-18-305-2014

Uhe, P., Philip, S., Kew, S., Shah, K., Kimutai, J., Mwangi, E., van Oldenborgh, G. J., Singh, R., Arrighi, J., Jjemba, E., Cullen, H., & Otto, F. (2018). Attributing drivers of the 2016 Kenyan drought. International Journal of Climatology, 38(51), e554–e568. https://doi.org/10.1002/joc.5389

Vicente-Serrano, S. M., Santiago, B., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., et al. (2013). Response of vegetation to drought time scales across global land biomes. PNAS, 110, 52–57. https://doi.org/10.1073/pnas.1207068110

Vicente-Serrano, S. M., Lopez-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., & Espejo, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4), 044001. https://doi.org/10.1088/1748-9326/9/4/044001

Vicente-serrano, S. M., Van der Schrier, G., Beguería, S., Molina, C. A., & Moreno, J. L. (2015). Contribution of precipitation and reference evapotranspiration to drought indices under different climates. Journal of Hydrology, 526, 42–54. https://doi.org/10.1016/j.jhydrol.2014.11.025

Villoria, N. B., & Chen, B. (2018). Yield risks in global maize markets : Historical evidence and projections in key regions of the world. Weather and Climate Extremes, 19, 42–48. https://doi.org/10.1016/j.wace.2018.01.003

Wainwright, C. M., Marsham, J. H., Keane, R. J., Rowell, D. P., Finney, D. L., Black, E., & Allan, R. P. (2019). ‘Eastern African Paradox’ rainfall decline due to shorter not less intense Long Rains. Npj Climate and Atmospheric Science, 2, 1–9. https://doi.org/10.1038/s41612-019-0091-7

Weghorst, K. (1996). The Reclamation Drought Index: Guidelines and practical applications. Bureau of Reclamation.

Wu, H., Hayes, M. J., Weiss, A., & Hu, Q. (2001). An evaluation of the Standardized Precipitation Index, the China-Z Index, and the statistical Z-score. International Journal of Climatology, 21, 745–758. https://doi.org/10.1002/joc.658

Yang, W., Seage, R., Cane, M. A., & Lyon, B. (2014). The East African long rains in observations and models. Journal of Climate, 27(19), 7185–7202. https://doi.org/10.1175/JCLI-D-13-00447.1

Zarei, A. R., & Mahmoudi, M. R. (2020). Assessment of the effect of PET calculation method on the Standardized Precipitation Evapotranspiration Index (SPEI ). Arabian Journal of Geosciences, 13, 182. https://doi.org/10.1007/s12517-020-5197-z

Zarei, A. R., Shabani, A., & Mahmoudi, M. R. (2020). Evaluation of the influence of occurrence time of drought on the annual yield of rain-fed winter wheat using backward multiple generalized estimation equation. Water Resources Management, 34, 2911–2931. https://doi.org/10.1007/s11269-020-02590-9

Zambreski, Z. T. (2016). A statistical assessment of drought variability and climate prediction for Kansas. MSc Dissertation, Jkansas State University. Retrieved November 16, 2021, from http://hdl.handle.net/2097/34137.

Zhang, Q., & Zhang, J. (2016). Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change. Natural Hazards, 81, 1323–1331. https://doi.org/10.1007/s11069-015-2137-4

Zhiña, D., Montenegro, M., Montalván, L., Mendoza, D., Contreras, J., Campozano, L., & Avilés, A. (2019). Climate change influences of temporal and spatial drought variation in the andean high mountain Basin. Atmosphere, 10, 558. https://doi.org/10.3390/atmos10090558