Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass–Animal Manure Mixtures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Borole, A. P., Klasson, K. T., Ridenour, W., Holland, J., Karim, K., & Al-Dahhan, M. H. (2006). Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Applied Biochemistry and Biotechnology, 129/132, 887–896. doi: 10.1385/ABAB:131:1:887 .
Schäfer, W., Letho, M., & Teye, F. (2006). Dry anaerobic digestion of organic residues on-farm—a feasibility study. Vihti, Finland: MTT Agrifood Research Finland.
McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28, 515–535. doi: 10.1016/j.biombioe.2004.05.006 .
Parrish, J., & Fike, J. H. (2005). The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences, 24, 423–459. doi: 10.1080/07352680500316433 .
Sanderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., Parrish, D. J., et al. (1996). Switchgrass as a sustainable bioenergy crop. Bioresource Technology, 56, 83–93. doi: 10.1016/0960-8524(95)00176-X .
McLaughlin, S. B., & Walsh, M. E. (1998). Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass and Bioenergy, 14, 317–324. doi: 10.1016/S0961-9534(97)10066-6 .
Tillman, D. A. (2002). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19, 365–384. doi: 10.1016/S0961-9534(00)00049-0 .
McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83, 47–54. doi: 10.1016/S0960-8524(01)00119-5 .
Dien, B. S., Jung, H. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Weimer, P. J., et al. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 30, 880–891. doi: 10.1016/j.biombioe.2006.02.004 .
Noike, T., Endo, G., Chang, J., Yaguchi, J., & Matsumoto, J. (1985). Characteristics of carbohydrate degradation and the rate limiting step in anaerobic digestion. Biotechnology and Bioengineering, 27, 1482–1489. doi: 10.1002/bit.260271013 .
APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). New York, USA: American Public Health Association.
Demirer, G. N., & Chen, S. (2008). Anaerobic biogasification of undiluted dairy manure in leaching bed reactors. Waste Management (New York, N.Y.), 28, 112–119. doi: 10.1016/j.wasman.2006.11.005 .
Lu, S., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences (China), 19, 416–420. doi: 10.1016/S1001-0742(07)60069-2 .
Veenken, K., Kalyuzhnyi, S., Scharff, H., & Hamelers, B. (2000). Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering, 126, 1076–1081. doi: 10.1061/(ASCE)0733-9372(2000)126:12(1076) .
Kim, M., Ahn, Y., & Speece, R. E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research, 36, 4369–4385. doi: 10.1016/S0043-1354(02)00147-1 .
Veenken, K., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69, 249–254. doi: 10.1016/S0960-8524(98)00188-6 .
MØller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33, 27–36.
Paul, J. W., & Beauchamp, E. G. (1989). Relationship between volatile fatty acids, total ammonia and pH in manure slurries. Biological Wastes, 29, 313–318. doi: 10.1016/0269-7483(89)90022-0 .
Mashandete, A., BjÖrnsson, L., Kivaisi, A. K., Rubindamayugi, M. S. T., & Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fiber waste. Renewable Energy, 31, 2385–2392. doi: 10.1016/j.renene.2005.10.015 .
Hasen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32, 5–12. doi: 10.1016/S0043-1354(97)00201-7 .
Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3–16. doi: 10.1016/S0960-8524(00)00023-7 .
Stirk, D. P. B. T. B., Domnanovich, A. M., & Holubar, P. (2006). A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry, 41, 1235–1238. doi: 10.1016/j.procbio.2005.12.008 .
Myint, M. T., & Nirmalakhandan, N. (2009). Enhancing anaerobic hydrolysis of cattle manure in leachbed reactors. Bioresource Technology, 100, 1695–1699. doi: 10.1016/j.biortech.2008.09.031 .
Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40, 1285–1292. doi: 10.1016/j.procbio.2004.05.008 .
Byukkamaci, N., & Filibeli, A. (2004). Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochemistry, 39, 1491–1494. doi: 10.1016/S0032-9592(03)00295-4 .