Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass–Animal Manure Mixtures

Springer Science and Business Media LLC - Tập 160 Số 4 - Trang 965-975 - 2010
Heekwon Ahn1, Matt C. Smith1, Shannon L. Kondrad1, Jeffrey W. White1
1USDA-ARS

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borole, A. P., Klasson, K. T., Ridenour, W., Holland, J., Karim, K., & Al-Dahhan, M. H. (2006). Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Applied Biochemistry and Biotechnology, 129/132, 887–896. doi: 10.1385/ABAB:131:1:887 .

Schäfer, W., Letho, M., & Teye, F. (2006). Dry anaerobic digestion of organic residues on-farm—a feasibility study. Vihti, Finland: MTT Agrifood Research Finland.

McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28, 515–535. doi: 10.1016/j.biombioe.2004.05.006 .

Parrish, J., & Fike, J. H. (2005). The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences, 24, 423–459. doi: 10.1080/07352680500316433 .

Sanderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., Parrish, D. J., et al. (1996). Switchgrass as a sustainable bioenergy crop. Bioresource Technology, 56, 83–93. doi: 10.1016/0960-8524(95)00176-X .

McLaughlin, S. B., & Walsh, M. E. (1998). Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass and Bioenergy, 14, 317–324. doi: 10.1016/S0961-9534(97)10066-6 .

Tillman, D. A. (2002). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19, 365–384. doi: 10.1016/S0961-9534(00)00049-0 .

McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83, 47–54. doi: 10.1016/S0960-8524(01)00119-5 .

Dien, B. S., Jung, H. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Weimer, P. J., et al. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 30, 880–891. doi: 10.1016/j.biombioe.2006.02.004 .

Noike, T., Endo, G., Chang, J., Yaguchi, J., & Matsumoto, J. (1985). Characteristics of carbohydrate degradation and the rate limiting step in anaerobic digestion. Biotechnology and Bioengineering, 27, 1482–1489. doi: 10.1002/bit.260271013 .

APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). New York, USA: American Public Health Association.

Demirer, G. N., & Chen, S. (2008). Anaerobic biogasification of undiluted dairy manure in leaching bed reactors. Waste Management (New York, N.Y.), 28, 112–119. doi: 10.1016/j.wasman.2006.11.005 .

Lu, S., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences (China), 19, 416–420. doi: 10.1016/S1001-0742(07)60069-2 .

Veenken, K., Kalyuzhnyi, S., Scharff, H., & Hamelers, B. (2000). Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering, 126, 1076–1081. doi: 10.1061/(ASCE)0733-9372(2000)126:12(1076) .

Kim, M., Ahn, Y., & Speece, R. E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research, 36, 4369–4385. doi: 10.1016/S0043-1354(02)00147-1 .

Veenken, K., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69, 249–254. doi: 10.1016/S0960-8524(98)00188-6 .

MØller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33, 27–36.

Paul, J. W., & Beauchamp, E. G. (1989). Relationship between volatile fatty acids, total ammonia and pH in manure slurries. Biological Wastes, 29, 313–318. doi: 10.1016/0269-7483(89)90022-0 .

Mashandete, A., BjÖrnsson, L., Kivaisi, A. K., Rubindamayugi, M. S. T., & Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fiber waste. Renewable Energy, 31, 2385–2392. doi: 10.1016/j.renene.2005.10.015 .

Hasen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32, 5–12. doi: 10.1016/S0043-1354(97)00201-7 .

Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3–16. doi: 10.1016/S0960-8524(00)00023-7 .

Stirk, D. P. B. T. B., Domnanovich, A. M., & Holubar, P. (2006). A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry, 41, 1235–1238. doi: 10.1016/j.procbio.2005.12.008 .

Myint, M. T., & Nirmalakhandan, N. (2009). Enhancing anaerobic hydrolysis of cattle manure in leachbed reactors. Bioresource Technology, 100, 1695–1699. doi: 10.1016/j.biortech.2008.09.031 .

Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40, 1285–1292. doi: 10.1016/j.procbio.2004.05.008 .

Byukkamaci, N., & Filibeli, A. (2004). Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochemistry, 39, 1491–1494. doi: 10.1016/S0032-9592(03)00295-4 .

Ahn, H. K., Richard, T. L., & Choi, H. L. (2007). Mass and thermal balance during composting of a poultry manure—wood shavings mixtures at different aeration rates. Process Biochemistry, 42, 215–223. doi: 10.1016/j.procbio.2006.08.005 .