Evaluation of Active PBAT Films Incorporated with Orange Essential Oil Biodegradation in Anaerobic Biodigesters

Journal of Polymers and the Environment - Tập 31 - Trang 3814-3824 - 2023
Gisely Alves da Silva1, Michelle Felix de Andrade1, Viviane Fonseca Caetano1, Ivo Diego de Lima Silva1, Luiz Emílio Pessoa Timeni de Moraes Filho2, Jorge Vinícius Fernandes Lima Cavalcanti1, Maria de Los Angeles Perez Fernandez Palha1, Glória Maria Vinhas1
1Department of Chemical Engineering, Federal University of Pernambuco (UFPE), Recife, Brazil
2Department of Chemical Engineering, Merrill Engineering, University of Utah, Salt Lake City, USA

Tóm tắt

The use of biodegradable polymers applied in active packaging systems, where additives are incorporated that aim to extend the shelf life of foods, is a promising topic in the search for ecologically correct materials. However, it is not known whether in these systems, the presence of the antimicrobials additive, will exert a negative influence on the biodegradation process of this polymeric material. Thus, in this work, the biodegradation process of poly (butylene adipate-co-terephthalate) (PBAT) films additive with orange essential oil in anaerobic biodigesters was monitored, as well as the growth of microorganisms involved during the process, and the production of methane gas that is the main metabolite in this type of biodegradation. PBAT films were produced through the extrusion process and added orange essential oil at concentrations of 0 and 15% wt. were used. The films before and after the 90-day biodegradation were macroscopically evaluated by medium infrared, exploratory differential calorimetry, and thermogravimetric analysis. The results showed that the evaluated period was not sufficient to mineralize the polymer and that orange essential oil had no influence on the biodegradation process. The PBAT and PBAT/EO films were stable when submitted to biodegradation in sludge for 90 days.

Tài liệu tham khảo

Koh LM, Khor SM (2022) Anal Chim Acta 1217:339989. https://doi.org/10.1016/j.aca.2022.339989 Avcu E, Bastan FE, Guney M, Avcu YY, Rehman MAU, Boccaccini AR (2022) Acta Biomater 151:1–44. https://doi.org/10.1016/j.actbio.2022.07.048 Cheng J, Eyheraguibel B, Jacquin J, Pujo-Pay M, Conan P, Barbe V, Hoypierres J, Delige G, Ter Halle A, Bruzaud S, Ghiglione J, Meistertzheim A (2022) Polym Degrad Stab 206:110159. https://doi.org/10.1016/j.polymdegradstab.2022.110159 Xu Z, Qiao X, Sun K (2020) Mater Today Commun 25:101541. https://doi.org/10.1016/j.mtcomm.2020.101541 Hernández-López M, Correa-Pacheco ZN, Bautista-Baños S, Zavaleta-Avejara L, Benítez-Jiménez JJ, Sabino-Gutiérrez MA, Ortega-Gudiño P (2019) Mater Chem Phys 234:345–353. https://doi.org/10.1016/j.matchemphys.2019.01.034 Andrade MF, Silva IDL, Silva GA, Cavalcante PVD, Silva FT, Almeida YMB, Vinhas GM, Carvalho LH (2020) LWT- Food Sci Technol 125:109148. https://doi.org/10.1016/j.lwt.2020.109148 Ahmeda MW, Haque MA, Mohibbullah M, Khan MSI, Islam MA, Mondal MHT, Ahmmed R (2022) Food Packag Shelf Life 33:100913. https://doi.org/10.1016/j.fpsl.2022.100913 Vergis J, Gokulakrishnan P, Agarwal RK, Kumar A (2013) Crit Rev Food Sci Nutr 55:1320–1323. https://doi.org/10.1080/10408398.2012.692127 Gu JD (2020) Environ Sci Pollut Res 28:1278–1282. https://doi.org/10.1007/s11356-020-11501-9 Cucina M, Carlet L, Nisi P, Somensi CA, Giordano A, Adani F (2022) J Clean Prod 368:133232. https://doi.org/10.1016/j.jclepro.2022.133232 Bátori V, Åkesson D, Zamani A, Taherzadeh MJ, Horváth IS (2018) Waste Manage 80:406–413. https://doi.org/10.1016/j.wasman.2018.09.040 Lim BKH, Thian ES (2022) Food Packag Shelf Life 34:100931. https://doi.org/10.1016/j.fpsl.2022.100931 Rech CR, Brabes KCS, Silva BEB, Bittencourt PRS, Koschevic MT, Silveira TFS, Martines MAU, Caone T, Martelli SM (2020) Case Stud Chem Environ Eng 2:100014. https://doi.org/10.1016/j.cscee.2020.100014 Cano AI, Cháfer M, Chiralt A, González-Martínez C (2016) Polym Degrad Stab 132:11–20. https://doi.org/10.1016/j.polymdegradstab.2016.04.014 Harrison AP Jr (1982) Appl Environ Microbiol 131:68–76. https://doi.org/10.1128/aem.36.6.861-869.1978 Postgate JR (1984) The sulphate-reducing bacteria, 2ª. Cambridge University Press, Cambridge Ruggero F, Carretti E, Gori R, Lotti T, Lubello C (2020) Chemosphere 246:125770. https://doi.org/10.1016/j.chemosphere.2019.125770 Sangroniz A, Sangroniz L, Aranburu N, Fernández M, Santamaria A, Iriarte M, Etxeberria A (2018) Eur Polym J 105:348–358. https://doi.org/10.1016/j.eurpolymj.2018.06.016 Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Polym Degrad Stab 95:2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018 Wang H, Wei D, Zheng A, Xiao H (2015) Polym Degrad Stab 116:14–22 Ren Y, Yang M, Weng Y (2019) J Polym Environ 27:2784–2792. https://doi.org/10.1016/j.polymdegradstab.2015.03.007 Quecholac-Piña X, Hernández-Berriel MC, Mañón-Salas MC, Espinosa-Valdemar RM, Vázquez-Morillas A (2020) Polymers 12:109. https://doi.org/10.3390/polym12010109 Chernicharo CAL (2007) Princípios do tratamento biológico de águas residuárias: reatores anaeróbios. Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, vol 5, p 379 Huang W, Wang Z, Zhou Y, Ng WJ (2015) Chemosphere 140:40–46. https://doi.org/10.1016/j.chemosphere.2014.10.047 Evangelho JA, Dannenberg GS, Biduski B, Halal L, Kringel DH, Gularte MA, Fiorentini AM, Zavareze ER (2019) Carbohydr Polym 222:114981 McKay S, Sawant P, Fehlberg J, Almenar E (2021) Waste Manage 120:230–239 Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polim Degradar 91:620–627. https://doi.org/10.1016/j.polymdegradstab.2005.02.029