Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Oberlin, 1976, Filamentous growth of carbon through benzene decomposition, J Cryst Growth, 32, 335, 10.1016/0022-0248(76)90115-9
Nesterenko AM, Kolesnik NF, Akhmatov YS, Sukhomlin VI, Prilutski OV. Metals 3 UDK 869.173.23. News of the Academy of Science, USSR; 1982, p. 12–6.
Thostenson, 2001, Advances in the science and technology of carbon nanotube and their composites: a review, Compos Sci Technol, 61, 1899, 10.1016/S0266-3538(01)00094-X
Berber, 2000, Unusually high thermal conductivity of carbon nanotubes, Phys Rev Lett, 84, 4613, 10.1103/PhysRevLett.84.4613
Peigney, 2001, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39, 507, 10.1016/S0008-6223(00)00155-X
Zhu, 2004, Reinforcing epoxy composites through covalent integration of functionalized nanotubes, Adv Funct Mater, 14, 643, 10.1002/adfm.200305162
Gojny, 2004, Carbon nanotube-reinforced epoxy-composites—enhanced stiffness and fracture toughness at low nanotube contents, Compos Sci Technol, 64, 2363, 10.1016/j.compscitech.2004.04.002
Gojny, 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study, Compos Sci Technol, 65, 2300, 10.1016/j.compscitech.2005.04.021
Munson-McGee, 1991, Estimation of the critical concentration in an anisotropic percolation network, Phys Rev B, 43, 3331, 10.1103/PhysRevB.43.3331
Celzard, 1996, Critical concentration in percolating systems containing a high-aspect-ratio filler, Phys Rev B, 53, 6209, 10.1103/PhysRevB.53.6209
Sandler, 1999, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40, 5967, 10.1016/S0032-3861(99)00166-4
Martin, 2004, Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites, Compos Sci Technol, 64, 2309, 10.1016/j.compscitech.2004.01.025
Sandler, 2003, Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites, Polymer, 44, 5893, 10.1016/S0032-3861(03)00539-1
Martin, 2005, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites, Polymer, 46, 877, 10.1016/j.polymer.2004.11.081
Schueler R. Entwicklung polymerer Verbundwerkstoffe mit elektrischer Leitfähigkeit, PhD Thesis, Technische Universität Hamburg-Harburg, Hamburg/Germany; 1994.
Schueler, 1997, Agglomeration and electrical percolation behaviour of carbon black dispersed in epoxy resin, J Appl Polym Sci, 63, 1741, 10.1002/(SICI)1097-4628(19970328)63:13<1741::AID-APP5>3.0.CO;2-G
Prasse, 1998, In situ observation of electric field induced agglomeration of carbon black in epoxy resin, Appl Phys Lett, 72, 1, 10.1063/1.121454
Kupke, 1998, Electrically conductive glass fibre reinforced epoxy resin, Mater Res Innovation, 2, 164, 10.1007/s100190050079
Yang, 2004, Thermal and electrical transport in multi-wall carbon nanotubes, Phys Lett A, 329, 207, 10.1016/j.physleta.2004.05.070
Cahill, 2002, Thermometry and thermal transport in micro/nanoscaled solid-state devices and structures, J Heat Transfer, 124, 223, 10.1115/1.1454111
Biercuk, 2002, Carbon nanotube composites for thermal management, Appl Phys Lett, 80, 2767, 10.1063/1.1469696
Song, 2005, Influence of the dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, 43, 1378, 10.1016/j.carbon.2005.01.007
Gustavsson, 1994, Thermal conductivity thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors, Rev Sci Instrum, 65, 3856, 10.1063/1.1145178
Taken from www.nanocyl.com and private communication with O. Decroly (Nanocyl S.A.).
Gojny, 2003, Surface modified carbon nanotubes in CNT/epoxy-composites, Chem Phys Lett, 370, 820, 10.1016/S0009-2614(03)00187-8
Thostenson, 2003, On the elastic properties of carbon nanotube-based composites: modeling and characterization, J Phys D: Appl Phys, 36, 573, 10.1088/0022-3727/36/5/323
Loos, 2005, Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging, Ultramicroscopy, 104, 160, 10.1016/j.ultramic.2005.03.007
Chantrenne, 2004, Analytical model for the thermal conductivity of nanostructures, Superlattices Microstruct, 35, 173, 10.1016/j.spmi.2003.11.011
Moisala A, Li Q , Kinloch IA, Windle AH. Thermal and electrical properties of carbon nanotube-epoxy composites. Compos Sci and Technol 2006;66, In press [Online available at www.sciencedirect.com.]
Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys Report, 409, 47, 10.1016/j.physrep.2004.10.006
Godovsky, 1995
Hatta, 1992, Thermal diffusivities of composites with various types of filler, J Compos Mater, 26, 612, 10.1177/002199839202600501