Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites

Polymer - Tập 47 Số 6 - Trang 2036-2045 - 2006
Florian H. Gojny1, Malte H.G. Wichmann1, Bodo Fiedler1, Ian A. Kinloch2, W. Bauhofer3, Alan H. Windle2, Karl Schulte1
1Polymer Composites Section, Technische Universität Hamburg-Harburg, Denickestrasse 15, 21073 Hamburg, Germany
2Department of Materials Science and Metallurgy, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3QZ, UK
3Technische Universität Hamburg-Harburg, Materials in Electrical Engineering and Optics, Eissendorfer Strasse 38, 21073 Hamburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0

Oberlin, 1976, Filamentous growth of carbon through benzene decomposition, J Cryst Growth, 32, 335, 10.1016/0022-0248(76)90115-9

Nesterenko AM, Kolesnik NF, Akhmatov YS, Sukhomlin VI, Prilutski OV. Metals 3 UDK 869.173.23. News of the Academy of Science, USSR; 1982, p. 12–6.

Thostenson, 2001, Advances in the science and technology of carbon nanotube and their composites: a review, Compos Sci Technol, 61, 1899, 10.1016/S0266-3538(01)00094-X

Berber, 2000, Unusually high thermal conductivity of carbon nanotubes, Phys Rev Lett, 84, 4613, 10.1103/PhysRevLett.84.4613

Peigney, 2001, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39, 507, 10.1016/S0008-6223(00)00155-X

Zhu, 2004, Reinforcing epoxy composites through covalent integration of functionalized nanotubes, Adv Funct Mater, 14, 643, 10.1002/adfm.200305162

Gojny, 2004, Carbon nanotube-reinforced epoxy-composites—enhanced stiffness and fracture toughness at low nanotube contents, Compos Sci Technol, 64, 2363, 10.1016/j.compscitech.2004.04.002

Gojny, 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study, Compos Sci Technol, 65, 2300, 10.1016/j.compscitech.2005.04.021

Kirkpartick, 1973, Percolation and conduction, Rev Mod Phys, 45, 574, 10.1103/RevModPhys.45.574

Munson-McGee, 1991, Estimation of the critical concentration in an anisotropic percolation network, Phys Rev B, 43, 3331, 10.1103/PhysRevB.43.3331

Celzard, 1996, Critical concentration in percolating systems containing a high-aspect-ratio filler, Phys Rev B, 53, 6209, 10.1103/PhysRevB.53.6209

Sandler, 1999, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40, 5967, 10.1016/S0032-3861(99)00166-4

Martin, 2004, Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites, Compos Sci Technol, 64, 2309, 10.1016/j.compscitech.2004.01.025

Sandler, 2003, Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites, Polymer, 44, 5893, 10.1016/S0032-3861(03)00539-1

Martin, 2005, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites, Polymer, 46, 877, 10.1016/j.polymer.2004.11.081

Schueler R. Entwicklung polymerer Verbundwerkstoffe mit elektrischer Leitfähigkeit, PhD Thesis, Technische Universität Hamburg-Harburg, Hamburg/Germany; 1994.

Schueler, 1997, Agglomeration and electrical percolation behaviour of carbon black dispersed in epoxy resin, J Appl Polym Sci, 63, 1741, 10.1002/(SICI)1097-4628(19970328)63:13<1741::AID-APP5>3.0.CO;2-G

Prasse, 1998, In situ observation of electric field induced agglomeration of carbon black in epoxy resin, Appl Phys Lett, 72, 1, 10.1063/1.121454

Kupke, 1998, Electrically conductive glass fibre reinforced epoxy resin, Mater Res Innovation, 2, 164, 10.1007/s100190050079

Yang, 2004, Thermal and electrical transport in multi-wall carbon nanotubes, Phys Lett A, 329, 207, 10.1016/j.physleta.2004.05.070

Cahill, 2002, Thermometry and thermal transport in micro/nanoscaled solid-state devices and structures, J Heat Transfer, 124, 223, 10.1115/1.1454111

Biercuk, 2002, Carbon nanotube composites for thermal management, Appl Phys Lett, 80, 2767, 10.1063/1.1469696

Song, 2005, Influence of the dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, 43, 1378, 10.1016/j.carbon.2005.01.007

Gustavsson, 1994, Thermal conductivity thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors, Rev Sci Instrum, 65, 3856, 10.1063/1.1145178

Taken from www.nanocyl.com and private communication with O. Decroly (Nanocyl S.A.).

Gojny, 2003, Surface modified carbon nanotubes in CNT/epoxy-composites, Chem Phys Lett, 370, 820, 10.1016/S0009-2614(03)00187-8

Thostenson, 2003, On the elastic properties of carbon nanotube-based composites: modeling and characterization, J Phys D: Appl Phys, 36, 573, 10.1088/0022-3727/36/5/323

Loos, 2005, Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging, Ultramicroscopy, 104, 160, 10.1016/j.ultramic.2005.03.007

Chantrenne, 2004, Analytical model for the thermal conductivity of nanostructures, Superlattices Microstruct, 35, 173, 10.1016/j.spmi.2003.11.011

Moisala A, Li Q , Kinloch IA, Windle AH. Thermal and electrical properties of carbon nanotube-epoxy composites. Compos Sci and Technol 2006;66, In press [Online available at www.sciencedirect.com.]

Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys Report, 409, 47, 10.1016/j.physrep.2004.10.006

Godovsky, 1995

Hatta, 1992, Thermal diffusivities of composites with various types of filler, J Compos Mater, 26, 612, 10.1177/002199839202600501

Eshelby, 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc R Soc, A, 241, 376, 10.1098/rspa.1957.0133