Evaluation and calibration of dynamic modulus prediction models of asphalt mixtures for hot climates: Qatar as a case study
Tài liệu tham khảo
American Association of State Highway and Transportation Officials, 1993
El-Badawy, 2012, Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: local calibration for Idaho, J. Mater. Civ. Eng., 24, 1412, 10.1061/(ASCE)MT.1943-5533.0000518
Christensen, 2003, Hirsch model for estimating the modulus of asphalt concrete, Asph. Paving Technol., no. 72, 97
G. Al-Khateeb, A. Shenoy, N. Gibson, T. Harman, A new simplistic model for dynamic modulus predictions of asphalt paving mixtures, in: Proceedings of the 2006 Annu. Meet. Assoc. Asph. Paving Technol., no. January, 2006.
Moussa, 2020, Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory effort reduction, Constr. Build. Mater., 265, 10.1016/j.conbuildmat.2020.120239
Moussa, 2021, Modeling hot-mix asphalt dynamic modulus using deep residual neural networks: parametric and sensitivity analysis study, Constr. Build. Mater., 294, 10.1016/j.conbuildmat.2021.123589
Zhang, 2017, Modification of the Hirsch dynamic modulus prediction model for asphalt mixtures, J. Mater. Civ. Eng., 29, 04017241, 10.1061/(ASCE)MT.1943-5533.0002099
Robbins, 2011, Evaluation of dynamic modulus predictive equations for southeastern United States asphalt mixtures, Transp. Res. Rec., 122, 10.3141/2210-14
M. Kang, T.M. Adams, Local calibration for fatigue cracking models used in the mechanistic-empirical pavement design guide, in: Proc. 2007 Mid-Continent Transp. Res. Symp., 2007.
Zhang, 2017, Modification of the Hirsch dynamic modulus prediction model for asphalt mixtures, J. Mater. Civ. Eng., 29, 1, 10.1061/(ASCE)MT.1943-5533.0002099
Kim, 2010
S. Yousefdoost, B. Vuong, I. Rickards, P. Armstrong, B. Sullivan, Evaluation of dynamic modulus predictive models for typical Australian asphalt mixes, in: Proceedings of the 15th AAPA Int. Flex. Pavements Conf., vol. 19, 2013, pp. 1–18.
Far, 2009, Application of artificial neural networks for estimating dynamic modulus of asphalt concrete, Transp. Res. Rec., 173, 10.3141/2127-20
Li, 2012, Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US Region, Road Mater. Pavement Des., 13, 249, 10.1080/14680629.2012.666641
Solatifar, 2020, Performance evaluation of dynamic modulus predictive models for asphalt mixtures, J. Rehabil. Civ. Eng., 8–3, 87
Shen, 2013, Local practice of assessing dynamic modulus properties for Washington state mixtures, Transp. Res. Rec., 2373, 89, 10.3141/2373-10
Khattab, 2014, Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia, Constr. Build. Mater., 64, 360, 10.1016/j.conbuildmat.2014.04.066
El-Badawy, 2018, Comparing artificial neural networks with regression models for hot-mix asphalt dynamic modulus Prediction, J. Mater. Civ. Eng., 30, 04018128, 10.1061/(ASCE)MT.1943-5533.0002282
Cooper, 2015, Dynamic modulus of asphalt mixtures: evaluation of effects on pavement performance prediction, Transp. Res. Rec., 2507, 67, 10.3141/2507-08
Cheng, 2021, Effects of using different dynamic moduli on predicted asphalt pavement responses in mechanistic pavement design, Road Mater. Pavement Des.
Ministry of Transport & Communication, 2015
Public Work Authority, 2016
M. Witczak, Simple Performance Tests: Summary of Recommended Methods and Database, Washington, D.C., 2006. 〈https://doi.org/10.17226/13949〉.
Q.M. Department, Qatar Climatological Normals. 〈https://qweather.gov.qa/CAA/ClimateNormals.aspx〉, (Accessed 15 November 2020).
Q.M. Department, Qatar Climatological Normals. 〈https://qweather.gov.qa/CAA/ClimateNormals.aspx〉, (Accessed 14 November 2021).
American Association of State Highway and Transportation Officials, Standard Practice for Developing Dynamic Modulus Master Curves for Asphalt Mixtures using the Asphalt Mixture Performance Tester (AMPT). Washington, DC, 2017.
Roja, 2021, Performance and blending evaluation of asphalt mixtures containing reclaimed asphalt pavement, Road Mater. Pavement Des., 22, 2441, 10.1080/14680629.2020.1764858
Roja, 2022, Rheological, thermal, and chemical evaluation of asphalt binders modified using crumb rubber and warm-mix additive, J. Mater. Civ. Eng., 34, 04022049, 10.1061/(ASCE)MT.1943-5533.0004194
Sebaaly, 2020, Performance-based assessment of rutting resistance of asphalt mixes designed for hot climate regions, Int. J. Pavement Eng., 1
of Environment, 2014
T. Pellinen, Kristiina, Investigation of the Use of Dynamic Modulus as an Indicator of Hot-mix Asphalt Performance, Arizona State Univ., vol. Thesis (PH, 2001.
Cano-Ortiz, 2022, Machine learning algorithms for monitoring pavement performance, Autom. Constr., 139
M.E. Kutay, M. Lanotte, Formulations of the Pavement Performance Prediction Models in the Mechanistic-Empirical Asphalt Pavement Analysis (MEAPA) Web Application, 2020, [Online]. Available: 〈https://paveapps.com/meapaapp2/〉.
National Cooperative Highway Research Program, 2004
N.C. for Meteorology, KSA Climatological Normals. 〈www.ncm.gov.sa〉, (Accessed 29 April 2022).