Evaluating the interaction of a tracheobronchial stent in an ovine in-vivo model

Biomechanics and Modeling in Mechanobiology - Tập 17 - Trang 499-516 - 2017
Donnacha J. McGrath1, Anja Lena Thiebes2, Christian G. Cornelissen2,3, Barry O’Brien1, Stefan Jockenhoevel2, Mark Bruzzi1, Peter E. McHugh1
1Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, NUI Galway, Galway, Ireland
2Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University and at AMIBM Maastricht University, Maastricht, The Netherlands, Aachen, Germany
3Department for Internal Medicine – Section for Pneumology, Medical Faculty, RWTH Aachen University, Aachen, Germany

Tóm tắt

Tracheobronchial stents are used to restore patency to stenosed airways. However, these devices are associated with many complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. Of these, granulation tissue formation is the complication that most frequently requires costly secondary interventions. In this study a biomechanical lung modelling framework recently developed by the authors to capture the lung in-vivo stress state under physiological loading is employed in conjunction with ovine pre-clinical stenting results and device experimental data to evaluate the effect of stent interaction on granulation tissue formation. Stenting is simulated using a validated model of a prototype covered laser-cut tracheobronchial stent in a semi-specific biomechanical lung model, and physiological loading is performed. Two computational methods are then used to predict possible granulation tissue formation: the standard method which utilises the increase in maximum principal stress change, and a newly proposed method which compares the change in contact pressure over a respiratory cycle. These computational predictions of granulation tissue formation are then compared to pre-clinical stenting observations after a 6-week implantation period. Experimental results of the pre-clinical stent implantation showed signs of granulation tissue formation both proximally and distally, with a greater proximal reaction. The standard method failed to show a correlation with the experimental results. However, the contact change method showed an apparent correlation with granulation tissue formation. These results suggest that this new method could be used as a tool to improve future device designs.

Tài liệu tham khảo

Al-Mayah A, Moseley J, Velec M et al (2010) Deformable image registration of heterogeneous human lung incorporating the bronchial tree. Med Phys 37:4560–4571. https://doi.org/10.1118/1.3471020 Al-Mayah A, Moseley J, Velec M, Brock K (2011) Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy. Phys Med Biol 56:4701–13. https://doi.org/10.1088/0031-9155/56/15/005 Auricchio F, Taylor R, Lubliner J (1997) Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput methods Appl 146(3):281–312 Bähr A, Wolf E (2012) Domestic animal models for biomedical research. Reprod Domest Anim 47:59–71. https://doi.org/10.1111/j.1439-0531.2012.02056.x Bols J, Degroote J, Trachet B et al (2013) A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl Math 246:10–17. https://doi.org/10.1016/j.cam.2012.10.034 Brock KK (2010) Results of a Multi-Institution Deformable Registration Accuracy Study (MIDRAS). Int J Radiat Oncol Biol Phys 76:583–596. https://doi.org/10.1016/j.ijrobp.2009.06.031 Burningham AR, Wax MK, Andersen PE et al (2002) Metallic tracheal stents: complications associated with long-term use in the upper airway. Ann Otol Rhinol Laryngol 111:285–90 Chaure J, Serrano C, Fernández-Parra R et al (2016) On studying the interaction between different stent models and rabbit tracheal tissue: numerical, endoscopic and histological comparison. Ann Biomed Eng 44:368–381. https://doi.org/10.1007/s10439-015-1504-3 Chen W, Clauser J, Thiebes AL et al (2016) Selection and fabrication of a non-woven polycarbonate urethane cover for a tissue engineered airway stent. Int J Pharm 514:255–262. https://doi.org/10.1016/j.ijpharm.2016.06.047 Chung FT, Lin SM, Chen HC et al (2008) Factors leading to tracheobronchial self-expandable metallic stent fracture. J Thorac Cardiovasc Surg 136:1328–1335. https://doi.org/10.1016/j.jtcvs.2008.05.039 Chung F-T, Chen H-C, Chou C-L et al (2011) An outcome analysis of self-expandable metallic stents in central airway obstruction: a cohort study. J Cardiothorac Surg 6:46. https://doi.org/10.1186/1749-8090-6-46 Codd SL, Lambert RK, Alley MR, Pack RJ (1994) Tensile stiffness of ovine tracheal wall. J Appl Physiol 76:2627–2635 Conway C, Sharif F, McGarry JP, McHugh PE (2012) A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc Eng Technol 3:374–387. https://doi.org/10.1007/s13239-012-0104-8 De Bock S, Iannaccone F, De Beule M et al (2013) Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics. J Biomech 46:2477–82. https://doi.org/10.1016/j.jbiomech.2013.07.010 Dooms C, De Keukeleire T, Janssens A, Carron K (2009) Performance of fully covered self-expanding metallic stents in benign airway strictures. Respiration 77:420–6. https://doi.org/10.1159/000203364 Ehrhardt J, Werner R, Schmidt-Richberg A et al (2008) Generation of a mean motion model of the lung using 4D-CT Image Data. Eurographics Workshop Vis Comput Biomed. https://doi.org/10.2312/VCBM/VCBM08/069-076 Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H (2011) Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans Med Imaging 30:251–265. https://doi.org/10.1109/TMI.2010.2076299 Fernández-Bussy S, Majid A, Caviedes I et al (2011) Treatment of airway complications following lung transplantation. Arch Bronconeumol (English Ed) 47:128–133. https://doi.org/10.1016/S1579-2129(11)70031-3 Freitag L (2010) Airway stents. In: Strausz J, Bolliger CT (eds) Interventional pulmonology. European Respiratory Society Journals Ltd, Sheffield, pp 190–217 Fuerst B, Mansi T, Carnis F et al (2015) Patient-specific biomechanical model for the prediction of lung motion from 4-D CT images. IEEE Trans Med Imaging 34:599–607. https://doi.org/10.1109/TMI.2014.2363611 García A, Peña E, Martínez MA (2012) Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J Mech Behav Biomed Mater 10:166–75. https://doi.org/10.1016/j.jmbbm.2012.02.006 Ghriallais RN, Bruzzi M (2014) Self-expanding stent modelling and radial force accuracy. Comput Methods Biomech Biomed Eng 17:318–333. https://doi.org/10.1080/10255842.2012.683427 Godoy MCB, Saldana DA, Rao PP et al (2014) Multidetector CT evaluation of airway stents: what the radiolo-gist should know. Radiographics 34:1793–1806. https://doi.org/10.1148/rg.347130063 Grewe PH, Müller KM, Lindstaedt M et al (2005) Reaction patterns of the tracheobronchial wall to implanted noncovered metal stents. Chest 128:986–990. https://doi.org/10.1378/chest.128.2.986 Grogan JA, Leen SB, McHugh PE (2013) Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34:8049–8060. https://doi.org/10.1016/j.biomaterials.2013.07.010 Guibert N, Mazieres J, Marquette CH et al (2015) Integration of interventional bronchoscopy in the management of lung cancer. Eur Respir Rev 24:378–391. https://doi.org/10.1183/16000617.00010014 Hautmann H, Rieger J, Huber RM, Pfeifer KJ (1999) Elastic deformation properties of implanted endobronchial wire stents in benign and malignant bronchial disease: a radiographic in vivo evaluation. Cardiovasc Intervent Radiol 22:103–8 Hu H-C, Liu Y-H, Wu Y-C et al (2011) Granulation tissue formation following Dumon airway stenting: the influence of stent diameter. Thorac Cardiovasc Surg 59:163–168 Hurewitz AN, Sidhu U, Bergofsky EH, Chanana AD (1984) How alterations in pleural pressure influence esophageal pressure. J Appl Physiol 56:1162–1169 Jeong BH, Um SW, Suh GY et al (2012) Results of interventional bronchoscopy in the management of postoperative tracheobronchial stenosis. J Thorac Cardiovasc Surg 144:217–222. https://doi.org/10.1016/j.jtcvs.2012.03.077 Lee P, Kupeli E, Mehta AC (2010) Airway stents. Clin Chest Med 31:141–150. https://doi.org/10.1016/j.ccm.2009.08.002 Lemaire A, Burfeind WR, Toloza E et al (2005) Outcomes of tracheobronchial stents in patients with malignant airway disease. Ann Thorac Surg 80:434–438. https://doi.org/10.1016/j.athoracsur.2005.02.071 Malvè M, Serrano C, Peña E et al (2014) Modelling the air mass transfer in a healthy and a stented rabbit trachea: CT-images, computer simulations and experimental study. Int Commun Heat Mass Transf 53:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.001 Malvè M, Palomar Del AP, Chandra S et al (2011a) FSI analysis of a human trachea before and after prosthesis implantation. J Biomech Eng 133:71003. https://doi.org/10.1115/1.4004315 Malvè M, Pérez del Palomar a, Chandra S et al (2011b) FSI Analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions. J Biomech Eng 133:21001. https://doi.org/10.1115/1.4003130 McGrath DJ, O’Brien B, Bruzzi M, McHugh PE (2014) Nitinol stent design-understanding axial buckling. J Mech Behav Biomed Mater 40:252–263. https://doi.org/10.1016/j.jmbbm.2014.08.029 McGrath DJ, O’Brien B, Bruzzi M et al (2016) Evaluation of cover effects on bare stent mechanical response. J Mech Behav Biomed Mater 61:567–580. https://doi.org/10.1016/j.jmbbm.2016.04.023 McGrath DJ, Thiebes AL, Cornelissen CG et al (2017) An ovine in vivo framework for tracheobronchial stent analysis. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-017-0904-8 Murphy K, van Ginneken B, Reinhardt JM et al (2011) Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging 30:1901–1920. https://doi.org/10.1109/TMI.2011.2158349 Murthy SC, Gildea TR, Mehta AC (2004) Removal of self-expandable metallic stents: Is it possible? Semin Respir Crit Care Med 25:381–385. https://doi.org/10.1055/s-2004-832711 Nadzeyka I, Gabler C, Erarslan D et al (2014) Manufacturing of biocompatible nonwoven structures by using spray atomization of dissolved polymers. Polym Eng Sci 54:867–873. https://doi.org/10.1002/pen.23622 Noppen M, Stratakos G, D’Haese J et al (2005) Removal of covered self-expandable metallic airway stents in benign disorders: indications, technique, and outcomes. Chest 127:482–7. https://doi.org/10.1378/chest.127.2.482 Ost DE, Shah AM, Lei X et al (2012) Respiratory infections increase the risk of granulation tissue formation following airway stenting in patients with malignant airway obstruction. Chest 141:1473–81. https://doi.org/10.1378/chest.11-2005 Perez del Palomar A, Trabelsi O, Mena A et al (2010) Patient-specific models of human trachea to predict mechanical consequences of endoprosthesis implantation. Philos Trans R Soc A Math Phys Eng Sci 368:2881–2896. https://doi.org/10.1098/rsta.2010.0092 Puma F, Farabi R, Urbani M et al (2000) Long-term safety and tolerance of silicone and self-expandable airway stents: an experimental study. Ann Thorac Surg 69:1030–4 Rausch SMK, Martin C, Bornemann PB et al (2011) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4:583–92. https://doi.org/10.1016/j.jmbbm.2011.01.006 Razi SS, Lebovics RS, Schwartz G et al (2010) Timely airway stenting improves survival in patients with malignant central airway obstruction. Ann Thorac Surg 90:1088–1093. https://doi.org/10.1016/j.athoracsur.2010.06.093 Saad CP, Murthy S, Krizmanich G, Mehta AC (2003) Self-expandable metallic airway stents and flexible bronchoscopy. Chest 124:1993–1999. https://doi.org/10.1378/chest.124.5.1993 Saito Y, Imamura H (2005) Airway stenting. Surg Today 35:265–70. https://doi.org/10.1007/s00595-004-2942-y Scheerlinck JPY, Snibson KJ, Bowles VM, Sutton P (2008) Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol 26:259–266. https://doi.org/10.1016/j.tibtech.2008.02.002 Schmäl F, Fegeler W, Terpe HJ et al (2003) Bacteria and granulation tissue associated with Montgomery T-tubes. Laryngoscope 113:1394–1400. https://doi.org/10.1097/00005537-200308000-00024 Sheikhy H, Shahidzadeh M, Ramezanzadeh B, Noroozi F (2013) Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive. J Ind Eng Chem 19:1949–1955. https://doi.org/10.1016/j.jiec.2013.03.008 Si H, Gärtner K (2015) Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In: Proceedings of the 14th international meshing roundtable. Springer, Berlin, pp 147–163 Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14:292–301. https://doi.org/10.1007/s00330-003-2022-5 Tawhai MH, Nash MP, Lin C-L, Hoffman E (2009) Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 107:912–20. https://doi.org/10.1152/japplphysiol.00324.2009 Tehrani JN, Yang Y, Werner R et al (2015) Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters. Phys Med Biol 60:8833–8849. https://doi.org/10.1088/0031-9155/60/22/8833 Thiebes AL, Kelly N, Sweeney CA et al (2017) Pulmostent: in vitro to in vivo evaluation of a tissue engineered endobronchial stent. Ann Biomed Eng 45:873–883. https://doi.org/10.1007/s10439-016-1737-9 Trabelsi O, del Palomar AP, López-villalobos JL (2010) Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med Eng Phys 32:76–82. https://doi.org/10.1016/j.medengphy.2009.10.010 Trabelsi O, Pérez del Palomar A, Mena Tobar A et al (2011) FE simulation of human trachea swallowing movement before and after the implantation of an endoprothesis. Appl Math Model 35:4902–4912. https://doi.org/10.1016/j.apm.2011.03.041 Trabelsi O, Malve M, Mena Tobar A, Doblare M (2015) Simulation of swallowing dysfunction and mechanical ventilation after a Montgomery T-tube insertion. Comput Methods Biomech Biomed Eng 18:1596–1605. https://doi.org/10.1080/10255842.2014.930448 Villard P-F, Beuve M, Shariat B et al (2005) Simulation of lung behaviour with finite elements: influence of bio-mechanical parameters. In: Third international conference on medical information visualisation–biomedical visualisation. IEEE, pp 9–14 Wall WA, Rabczuk T (2008) Fluid-structure interaction in lower airways of CT-based lung geometries. Int J Numer Methods Fluids 57:653–675. https://doi.org/10.1002/fld.1763 Werner R, Ehrhardt J, Schmidt R, Handels H (2009) Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med Phys 36:1500. https://doi.org/10.1118/1.3101820 West JB (2012) Respiratory physiology: the essentials. Lippincott Williams and Wilkins, Philadelphia Zakaluzny SA, Lane JD, Mair EA (2003) Complications of tracheobronchial airway stents. Otolaryngol Head Neck Surg 128:478–88. https://doi.org/10.1016/mhn.2003.107