Evaluating the Accuracy of ERA5 Wave Reanalysis in the Water Around China
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, A., Venugopal, V., and Harrison, G. P., 2013. The assessment of extreme wave analysis methods applied to potential marine energy sites using numerical model data. Renewable & Sustainable Energy Reviews, 27: 244–257, DOI: https://doi.org/10.1016/j.rser.2013.06.049.
Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U., and Watson, S., 2019. Airborne wind energy resource analysis. Renewable Energy, 141: 1103–1116.
Bromirski, P. D., Cayan, D. R., and Flick, R. E., 2005. Wave spectral energy variability in the northeast Pacific. Journal of Geophysical Research, 110: C03005, https://doi.org/10.1029/2004JC002398.
Caires, S., and Sterl, A., 2005. A new nonparametric method to correct model data: Application to significant wave height from the ERA-40 re-analysis. Journal of Atmospheric and Oceanic Technology, 22: 443–459, DOI: https://doi.org/10.1175/JTECH1707.1.
Caires, S., Sterl, A., Bidlot, J.-R., Graham, N., and Swail, V., 2004. Intercomparison of different wind-wave reanalysis. Journal of Climate, 17(10): 1893–1913.
Campos, R. M., and Soares, C. G., 2016. Comparison of HIPO-CAS and ERA wind and wave reanalysis in the North Atlantic Ocean. Ocean Engineering, 112: 320–334.
Cardone, V. J., Callahan, B. T., Chen, H., Cox, A. T., Morrone, M. A., and Swail, V. R., 2015. Global distribution and risk to shipping of very extreme sea states (VESS). International Journal of Climatology, 35(1): 69–84.
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M., and Onorato, M., 2012. Rogue waves in crossing seas: The Louis Majesty accident. Journal of Geophysical Research, 117: C00J10.
Czernecki, B., Taszarek, M., Marosz, M., Półrolniczak, M., Kolendowicz, L., Wyszogrodzki, A., and Szturc, J., 2019. Application of machine learning to large hail prediction-The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmospheric Research, 227: 249–262.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtolda, P., Beljaarsa, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F., 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137: 553–597, DOI: https://doi.org/10.1002/qj.828.
Genmrich, J., Thomas, B., and Bouchard, R., 2011. Observational changes and trends in the northeast Pacific wave records. Geophysical Research Letters, 38: L22601, https://doi.org/10.1029/2011GL049518.
Guedes Soares, C., and Moan, T., 1991. Model uncertainty in the long term distribution of wave induced bending moments for fatigue design of ship structures. Marine Structures, 4: 295–315.
Guedes Soares, C., and Scotto, M. G., 2001. Modelling uncertainty in long-term predictions of significant wave height. Ocean Engineering, 28: 329–342.
Guedes Soares, C., and Trovão, M. F. S., 1991. Influence of wave climate modelling on the long term prediction of wave induced responses of ship structures. In: Dynamics of Marine Vehicles and Structures in Waves. Price, W. G., et al., eds., Elsevier Science Publishers, Amsterdam, 1–10.
Gulev, S. K., Grigorieva, V., Sterl, A., and Woolf, D., 2003. Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. Journal of Geophysical Research, 108(C1): 3236, https://doi.org/10.1029/2002JC001437.
Hemer, M. A., Church, J. A., and Hunter, J. R., 2010. Variability and trends in the directional wave climate of the Southern Hemisphere. International Journal of Climatology, 30(4): 475–491.
Hersbach, H., and Dee, D., 2016. ERA5 reanalysis is in production. ECMWF Newsletter, No. 147.
ISSC, 2015. Committee Environment report. Proceedings of International Ship and Offshore Structures Congress. Taylor and Francis Group, London, 1–72.
Janssen, P. A. E. M., 2004. The Interaction of Ocean Waves and Wind. Cambridge University Press, London, 312pp.
Kumar, V. S., and Naseef, T. M., 2015. Performance of ERA-Interim wave data in the nearshore waters around India. Journal of Atmospheric and Oceanic Technology, 32(6): 1257–1269.
Le Traon, P. Y., 2013. From satellite altimetry to Argo and operational oceanography: Three revolutions in oceanography. Ocean Science, 9: 901–915, DOI: https://doi.org/10.5194/os-9-901-2013.
Mahmoodi, K., Ghassemi, H., and Razminia, A., 2019. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset. Energy, 187: 1–18.
Menendez, M., Mendez, F. J., Losada, I. J., and Graham, N. E., 2008. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophysical Research Letters, 35: L22607, https://doi.org/10.1029/2008GL035394.
Meng, X., Guo, J., and Han, Y., 2018. Preliminarily assessment of ERA5 reanalysis data. Journal of Marine Meteorology, 38(1): 91–99.
Portilla, J., Sosa, J., and Cavaleri, L., 2013. Wave energy resources: Wave climate and exploitation. Renewable Energy, 57: 594–605, DOI: https://doi.org/10.1016/j.renene.2013.02.032.
Prpic-Oršic, J., Vettor, R., Guedes Soares, C., and Faltinsen, O. M., 2015. Influence of ship routes on fuel consumption and CO2 emission. In: Maritime Technology and Engineering. Guedes Soares, C., and Santos, T. A., eds., Taylor & Francis Group, London, 857–864.
Rascle, N., and Ardhuin, F., 2013. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modelling, 70: 174–188.
Reguero, B. G., Menendez, M., Mendez, F. J., Minguez, R., and Losada, I. J., 2012. A global ocean wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 65: 38–55.
Shanas, P. R., and Kumar, V. S., 2014. Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data. Natural hazards and earth system sciences, 14: 1371–1381, DOI: https://doi.org/10.5194/nhess-14-1371-2014.
Sharp, E., Dodds, P., Barrett, M., and Spataru, C., 2015. Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information. Renewable Energy, 77: 527–538.
Shi, H. Y., Cao, X. F., Wen, X. H., Wu, Q., and Guo, P. F., 2016. Numerical model research of the spatial characteristics of typhoon waves in the northwestern of the South China Sea near Hainan Island during the transmit of typhoon ‘Son-Tink’. Marine Environmental Science, 35(3): 366–373.
Shi, H. Y., You, Z. J., Luo, X. Y., Hu, C., Zhang, P., and Song, Y. Z., 2017. Assessment of wave energy resources on 35 years, ERA-Interim for China Sea area based reanalysis data. Transactions of Oceanology and Limnology, 2017(6): 30–37.
Stopa, J. E., and Cheung, K. F., 2014. Intercomparison of wind and wave data from the ECMWF reanalysis Interim and the NCEP climate forecast system reanalysis. Ocean Modelling, 75: 65–83, DOI: https://doi.org/10.1016/j.ocemod.2013.12.006.
Vanem, E., and Walker, S. E., 2013. Identifying trends in the ocean wave climate by time series analyses of significant wave height data. Ocean Engineering, 61: 148–160.
Woolf, D. K., Challenor, P. G., and Cotton, P. D., 2002. Variability and predictability of the North Atlantic wave climate. Journal of Geophysical Research, 107(C10): 3145, https://doi.org/10.1029/2001JC001124.
Yi, F., Feng, W. B., and Cao, H. J., 2018. Wave analysis based on ERA-Interim reanalysis data in the South China Sea. Marine Forecasts, 35(1): 44–51.
Young, I. R., 1999. Seasonal variability of the global ocean wind and wave climate. International Journal of Climatology, 19(9): 931–950.