Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá xói mòn bờ sông theo chiều ngang với sản lượng trầm tích thông qua mô hình tích hợp ở đồng bằng lũ hạ lưu Ganges, Ấn Độ
Tóm tắt
Một trong những thảm họa thiên nhiên do dòng sông uốn khúc gây ra là xói mòn bờ sông, điều này tạo ra các vấn đề xã hội, kinh tế và môi trường tại vùng ven sông và là nguồn gốc gây ra mức độ trầm tích gia tăng trong dòng sông. Xói mòn bờ sông và sự cố bờ tạo ra một chu trình phức tạp, như sự rút lui của bờ sông, điều này không thể được đo lường và dự đoán dễ dàng bằng bất kỳ mô hình nào. Dòng chảy quanh co dọc theo sông Bhagirathi-Hooghly đã tạo ra tình trạng xói mòn bờ sông và sự rút lui của bờ sông ở nhiều khu vực, qua đó việc đo lường sự ổn định của bờ và xói mòn trở nên khá phức tạp. Do đó, mô hình BSTEM, kết hợp với HEC-RAS, đã được sử dụng trong bài viết này để đo lường chính xác xói mòn và sự rút lui của bờ sông. Dữ liệu về xói mòn bờ sông và việc rút lui cho giai đoạn 2019–2020 đã được mô phỏng dựa trên dữ liệu quan sát được từ 2016 đến 2018 để có phép đo chính xác. Ngoài ra, tổng lượng trầm tích được sinh ra từ bờ sông đã được hiệu chỉnh và mô phỏng với sự trợ giúp của công thức vận chuyển trầm tích trong HEC-RAS, điều này cho thấy sự gia tăng dần dần xói mòn bờ sông trong hiện tại (2019–2020). Mô hình này được kỳ vọng sẽ hỗ trợ xây dựng chính sách của chính phủ về việc bảo vệ xói mòn bờ sông và phục hồi sông trong tương lai.
Từ khóa
Tài liệu tham khảo
Albidin RZ, Sulaiman MS, Yusoff N (2017) Erosion risk assessment: a case study of the Langat riverbank in Malaysia. Int Soil Water Conserv Res 5:26–35. https://doi.org/10.1016/j.iswcr.2017.01.002
Allmanova Z, VIckova M, Jankovsky M, Allman M (2021) How can stream bank erosion be predicted on small water courses? Verification of BANCS model on the Kubrica watershed. Int J Sediment Res 36(3):419–429. https://doi.org/10.1016/j.ijsrc.2020.10.008
Al-Madhhachi A-ST, Al-Mussawy HA, Basheer MI, Abdul-Sahib AA (2020) Quantifying Tigris riverbanks stability of southeast Baghdad city using BSTEM. Int J Hydrol Sci Technol 10(3):230–247. https://doi.org/10.1504/IJHST.2020.107212
Amiri-Tokaldany E, Darby SE, Tosswell P (2003) Bank stability analysis for predicting reach scale land loss and sediment yield. J Am Water Resour Assoc 39(4):897–909. https://doi.org/10.1111/j.1752-1688.2003.tb04414.x
Bandyopadhyay S, Kar NS, Das S, Sen J (2014) River systems and water resources of West Bengal: a review. Spec Publ Geol Soc India 3:63–84. https://doi.org/10.17491/cgsi%2F2014%2F62893
Bankhead N, Simon A, Thomas R, Klimetz L, Klimetz D (2010) Sediment loadings from streambanks and levees along the Sacramento river and selected tributaries. U.S Department of Agriculture, Agriculture Research Service, National Sedimentation Laboratory, Oxford, Mississippi
Brunner GW, CEIWR-HEC (2021) HEC-RAS river analysis system user’s manual v 6.0. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
Brunner GW, Warner JC, Wolfe BC, Piper SS, Marston L (2021) HEC-RAS river analysis system application guide v 6.0. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
CEIWR-HEC (2015) HEC-RAS USDA-ARS Bank stability and toe erosion model (BSTEM) technical reference and user manual. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
Darby SE, Thorne CR (1996) Numerical simulation of widening and bed deformation of straight sand-bed rivers I: model development. J Hydraul Eng 122:184–193. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(184)
Das BC (2014) Impact of in-bed and on-bank soil cutting by brick fields on moribund deltaic rivers: a study of Nadia river in West Bengal. NEHU J 12(2):101–111
Duan G, Shu A, Rubinato M, Wang S, Zhu F (2018) Collapsing mechanisms of the typical cohesive riverbank along the ningxia-inner Mongolia catchment. Water 10:1272. https://doi.org/10.3390/w10091272
Gasser E, Perona P, Dorren L, Phillips C, Hubl J, Schwarz M (2020) A new framework to model hydraulic bank erosion considering the effects of roots. Water 12(3):893. https://doi.org/10.3390/w12030893
Ghosh KG, Pal S, Mukhopadhyay S (2016) Validation of BANCS model for assessing stream bank erosion hazard potential (SBEHP) in Bakreshwar river of Rarh region. Eastern India Model Earth Syst Environ 2:95. https://doi.org/10.1007/s40808-016-0172-0
Ghosh A, Biswas Roy M, Roy PK (2020) Estimation and prediction of the oscillation pattern of meandering geometry in a sub-catchment basin of Bhagirathi-Hooghly river, West Bengal, India. S N Appl Sci. https://doi.org/10.1007/s42452-020-03275-z
Ghosh A, Roy MB, Roy PK, Mukherjee S (2021) Assessing the nature of sediment transport with bridge scour by 1D sediment transport model in the sub-catchment basin of Bhagirathi-Hooghly river. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-01058-4
Gibson S, Sanchez A (2020) HEC-RAS sediment transport user’s manual v 6.0. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
Gibson S, Simon A, Langendoen EJ, Bankhead N, Shelley J (2015) A physically-based channel-modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS bank-stability and toe-erosion model (BSTEM). In: Proceedings of 3rd joint federal interagency sedimentation and hydrologic modeling conference, Reno, NV,19–23 Apr 2015, p 12
Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105:101–120. https://doi.org/10.1016/j.earscirev.2011.01.008
Gupta D, Hazarika BB, Berlin M (2020) Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Comput Appl 32:12971–12998. https://doi.org/10.1007/s00521-020-04741-w
Gupta D, Hazarika BB, Berlin M et al (2021) Artificial intelligence for suspended sediment load prediction: a review. Environ Earth Sci 80:346. https://doi.org/10.1007/s12665-021-09625-3
Hazarika BB, Gupta D, Berlin M (2020) Modeling suspended sediment load in a river using extreme learning machine and twin support vector regression with wavelet conjunction. Environ Earth Sci 79:234. https://doi.org/10.1007/s12665-020-08949-w
Hazarika BB, Gupta D, Berlin M (2021) A coiflet LDMR and coiflet OB-ELM for river suspended sediment load prediction. Int J Environ Sci Technol 18:2675–2692. https://doi.org/10.1007/s13762-020-02967-8
Hooke JM (1972) An analysis of the processes of riverbank erosion. J Hydrol 42:39–62. https://doi.org/10.1016/0022-1694(79)90005-2
Hudson J, Sweby PK (2005) A high-resolution scheme for the equations governing 2D bed-load sediment transport. Int J Numer Meth 47:1085–1091. https://doi.org/10.1002/fld.853
Julian JP, Torres R (2006) Hydraulic erosion of cohesive riverbanks. Geomorphology 76:193–206. https://doi.org/10.1016/j.geomorph.2005.11.003
Klavon K, Fox G, Guertault L, Langendoen E, Enlow H, Miller R, Khanal A (2016) Evaluating a process-based model for use in streambank stabilization: insights on the bank stability and toe erosion model (BSTEM). Earth Surf Proc Land 42(1):191–213. https://doi.org/10.1002/esp.4073
Konsoer KM, Rhoads BL, Langendoen EJ, Best JL, Ursic ME, Abad JD, Garcia MH (2015) Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252:80–97. https://doi.org/10.1016/J.GEOMORPH.2015.08.002
Koohafkan M, Gibson S, Boyd PM, Pridal D (2019) Modeling bank migration on the Missouri river with HEC-RAS: a calibrated HEC-RAS/BSTEM model. In: Proceedings of the SEDHYD 2019 conference on sedimentation and hydrologic modeling, Reno, Nevada, USA, 24–28 June 2019, p 8
Krzeminska D, Kerkhof T, Skaalsveen K, Stolte J (2019) Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA 172:87–96. https://doi.org/10.1016/j.catena.2018.08.014
Lammers RW, Bledsoe BP, Langendoen EJ (2016) Uncertainty and sensitivity in a bank stability model: implications for estimating phosphorus loading. Earth Surf Proc Land 42(4):612–623. https://doi.org/10.1002/esp.4004
Langendoen EJ, Simon A (2008) Modeling the evolution of incised streams. II: streambank erosion. J Hydraul Eng 134:905–915. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(905)
Lawler DM (1993) The measurement of river bank erosion and lateral channel change: a review. Earth Surf Process Landf 18:777–821. https://doi.org/10.1002/esp.3290180905
Lindow N, Fox GA, Evans RO (2009) Seepage erosion in layered stream bank material. Earth Surf Process Landf 34:1693–1701. https://doi.org/10.1002/esp.1874
Luppi L, Rinaldi M, Teruggi LB, Darby SE, Nardi L (2008) Monitoring and numerical modelling of riverbank erosion processes: a case study along the Cecina river (central Italy). Earth Surf Process Landf 34(4):530–546. https://doi.org/10.1002/esp.1754
Majumdar S, Mandal S (2020) Acceptance of BANCS model for predicting stream bank erosion potential and rate in the left bank of Ganga river of Diara region in Malda district, North East India. Spat Inf Res 29:43–54. https://doi.org/10.1007/s41324-020-00334-w
Midgley TL, Fox GA, Heeren DM (2011) Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral streambank retreat on Ozark streams. In: Proceedings of world environmental and water resources congress 2011, Palm Springs, California, United States, 22–26 May 2011, https://doi.org/10.1061/41173(414)209
Nanson GC, Hickin EJ (1986) A statistical analysis of bank erosion and channel migration in western Canada. Geol Soc Am Bull 97:497–504. https://doi.org/10.1130/0016-7606(1986)97%3C497:ASAOBE%3E2.0.CO;2
Osman AM, Thorne CR (1988) Riverbank stability analysis. I: theory. J Hydraul Eng 114:134–150. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:2(134)
Pal R, Biswas SS, Pramanik MK, Mondal B (2016) Bank vulnerability and avulsion modeling of the Bhagirathi-Hugli river between Ajay and Jalangi confluences in lower Ganga Plain India. Model Earth Syst Environ 2:65. https://doi.org/10.1007/s40808-016-0125-7
Palmar JA, Schilling KE, Isenhart TM, Schultz RC, Tomer MD (2014) Streambank erosion rates and loads within a single watershed: bridging the gap between temporal and spatial scales. Geomorphology 209:66–78. https://doi.org/10.1016/j.geomorph.2013.11.027
Panda S, Bandyopadhyay J (2011) Morphodynamic changes of Bhagirathi river at Murshidabad district using geoinformatics. J Geogr Inf Syst 3:85–97. https://doi.org/10.4236/jgis.2011.31006
Rasouli MO, Sadat SH, Xenarios S (2020) Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river. J Environ Sci Rev 1(1):1–6
Rinaldi M, Mengoni B, Luppi L, Darby SE, Mosselman E (2008) Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resour Res 44:303–312. https://doi.org/10.1029/2008WR007008
Rivas T, Chowdhury S, AuBuchon J, Nguyen H, Langendoen E, Ursic M, Eom M, Majd MS, Cheung FY (2019) Erosion Assessment of Sacramento and American river levees. In: Proceedings of SEDHYD 2019 conference on sedimentation and hydrologic modeling, Reno, Nevada, USA, June 24–28 2019, p 16
Rudra K (2010) Dynamics of the Ganga in West Bengal, India (1764–2007): implications for science-policy interaction. Quat Int 227:161–169. https://doi.org/10.1016/j.quaint.2009.10.043
Rudra K (2014) Changing river courses in the western part of the Ganga–Brahmaputra delta. Geomorphology 227:87–100. https://doi.org/10.1016/j.geomorph.2014.05.013
Samadi A, Amiritokaldany E, Darby SE (2009) Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling. Geomorphology 106:219–230. https://doi.org/10.1016/j.geomorph.2008.10.019
Simon A, Collison AJC (2001) Pore-water pressure effects on the detachment of cohesive streambeds: seepage forces and matric suction. Earth Surf Process Landf 26:1421–1442. https://doi.org/10.1002/ESP.287
Simon A, Curini A, Darby SE, Langendoen EJ (2000) Bank and near-bank processes in an incised channel. Geomorphology 35:193–217. https://doi.org/10.1016/S0169-555X(00)00036-2
Simon A, Pollen-Bankhead N, Mahacek V, Langendoen E (2009) Quantifying reductions of mass-failure frequency and sediment loadings from streambanks using toe protection and other means: lake Tahoe, United States. J Am Water Resour Assoc 45:170–186. https://doi.org/10.1111/j.1752-1688.2008.00268.x
Simon A, Pollen-Bankhead N, Thomas RE (2011) Development and application of a deterministic bank stability and toe erosion model for stream restoration. In: Simon A, Bennett SJ, Castro JM (Eds) Stream restoration in dynamic fluvial systems, American Geophysical Union, Washington, D. C
Simon A (2010) Iterative bank-stability and toe-erosion modeling for predicting streambank loading rates and potential load reductions. In: Proceedings of 2nd joint federal interagency conference, Las Vegas, NV, June 27–July 1 2010
Stryker J, Wemple B, Bomblies A (2017) Modeling sediment mobilization using a distributed hydrological model coupled with a bank stability model. Water Resour Res 53(3):2051–2073. https://doi.org/10.1002/2016WR019143
Taghavi M, Dovoudi MH, Amiritokaldany E, Darby SE (2010) An analytical method to estimate failure plane angle and tension crack depth for use in riverbank stability analyses. Geomorphology 123:74–83. https://doi.org/10.1016/j.geomorph.2010.06.017
Thapa I, Tamrakar NK (2016) Bank stability and toe erosion model of the Kodku Khola bank, southeast Kathmandu valley, central Nepal. J Nepal Geol Soc 50:105–111. https://doi.org/10.3126/jngs.v50i1.22870
Thorne CR (1982) Processes and mechanisms of river bank erosion. In: Bathurst JC, Thorne CR (Eds) Gravel-Bed rivers, Wiley and Sons, Chichester, UK, pp 227–259
Twidale CR (1964) Erosion of an alluvial bank at birdwood. South Australia z Geomorphol 8:189–211. https://doi.org/10.1127/zfg/8/1964/189
Yu M, Wei H, Liang Y, Hu C (2010) Study on the stability of non-cohesive river bank. Int J Sedim Res 25(4):391–398. https://doi.org/10.1016/S1001-6279(11)60006-1
Yu M, Wei H, Wu S (2015) Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force. Int J Sediment Res 1:81–89. https://doi.org/10.1016/S1001-6279(15)60009-9
Zhang Z, Shu A, Zhang K, Liu H, Wang J, Dai J (2019) Quantification of river bank erosion by RTK GPS monitoring: case studies along the Ningxia-Inner Mongolia reaches of the Yellow river. China Environ Monit Assess 191:140. https://doi.org/10.1007/s10661-019-7269-7