Evaluating Shear Response of UHPC Bridge Girders Exposed to Fire

Augusto Masiero Gil1, Venkatesh Kodur2
1Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
2Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48823, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Garlock M, Paya-Zaforteza I, Kodur VKR, Gu L (2012) Fire hazard in bridges: review, assessment and repair strategies. Eng Struct 35:89–98. https://doi.org/10.1016/j.engstruct.2011.11.002

Kodur VKR, Naser MZ (2013) Importance factor for design of bridges against fire hazard. Eng Struct 54:207–220. https://doi.org/10.1016/j.engstruct.2013.03.048

Kodur VKR, Naser MZ (2019) Designing steel bridges for fire safety. J Constr Steel Res 156:46–53. https://doi.org/10.1016/j.jcsr.2019.01.020

Kodur VKR, Naser MZ (2021) Fire hazard in transportation infrastructure: review, assessment, and mitigation strategies. Front Struct Civil Eng. https://doi.org/10.1007/s11709-020-0676-6

Peris-Sayol G, Paya-Zaforteza I, Balasch-Parisi S, Alós-Moya J (2017) Detailed analysis of the causes of bridge fires and their associated damage levels. J Perform Constr Facil. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000977

Hu J, Carvel R, Usmani A (2021) Bridge fires in the 21st century: a literature review. Fire Saf J. https://doi.org/10.1016/j.firesaf.2021.103487

Kodur V, Gil A (2022) Fire hazard in concrete bridges: review, assessment and mitigation strategies. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2022.2152465

ACI 216 (2014) Code requirements for determining fire resistance of concrete and masonry construction assemblies. In: American Concrete Institute, Farmington Hills, MI, USA, Farmington Hills, MI, USA

International Code Council (2018) International Building Code

AASHTO (American Association of State Highway and Transportation Officials) (2020) LRFD bridge design specifications, 9th edn. Washington, DC, USA

CSA (Canadian Standards Association) (2019) CSA S6, Canadian highway bridge design code, 12th edn. CSA Group, Canada

Taly N (2015) Highway bridge superstructure engineering: LRFD approaches to design and analysis. CRC Press, Boca Raton, FL

National Fire Protection Association (NFPA) (2008) NFPA 502 Standard for road tunnels, bridges, and other limited access highways. Quincy, MA

Cerema (2018) Résistance à l’incendie des ponts routiers. Sourdun, France

Banerji S, Kodur V, Solhmirzaei R (2020) Experimental behavior of ultra high performance fiber reinforced concrete beams under fire conditions. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.110316

Kodur VKR, Banerji S (2021) Modeling the fire-induced spalling in concrete structures incorporating hydro-thermo-mechanical stresses. Cem Concr Compos 117:103902. https://doi.org/10.1016/j.cemconcomp.2020.103902

Li Y, Zhang D (2021) Effect of lateral restraint and inclusion of polypropylene and steel fibers on spalling behavior, pore pressure, and thermal stress in ultra-high-performance concrete (UHPC) at elevated temperature. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121879

Gil A, Banerji S, Kodur V (2023) Factors influencing pore pressure measurements in concrete during heating and its influence on fire-induced spalling. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2023.105228

Banerji S, Kodur V (2021) Effect of temperature on mechanical properties of ultra-high performance concrete. Fire Mater 46(1):287–301

Kodur V, Banerji S (2020) Comparative fire behavior of reinforced concrete beams made of different concrete strengths. In: Structures in Fire Conference. University of Queensland Library

Nilson A, Darwin D, Dolan C (2010) Design of concrete structures, 14th edn. McGraw Hill, New York, NY

ACI 318 (2019) Building code requirements for structural concrete. American Concrete Institute, Farmington Hills, MI, USA

Kodur VKR, Solhmirzaei R, Agrawal A et al (2018) Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups. Eng Struct 174:873–884. https://doi.org/10.1016/j.engstruct.2018.08.010

Pansuk W, Nguyen TN, Sato Y et al (2017) Shear capacity of high performance fiber reinforced concrete I-beams. Constr Build Mater 157:182–193. https://doi.org/10.1016/j.conbuildmat.2017.09.057

Imam M, Vandewalle L, Mortelmans F (1995) Shear-moment analysis of reinforced high strength concrete beams containing steel fibres. Can J Civil Eng 22:462–470

Al-Ta’an SA, Al-Feel JR (1990) Evaluation of shear strength of fibre-reinforced concrete beams. Cem Concr Compos 12:87–94

Ngo TT, Park JK, Pyo S, Kim DJ (2017) Shear resistance of ultra-high-performance fiber-reinforced concrete. Constr Build Mater 151:246–257. https://doi.org/10.1016/j.conbuildmat.2017.06.079

AFNOR—French standard institute (2016) NF P 18–710—National addition to Eurocode 2-Design of concrete structures: specific rules for Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC)

Eurocode 2 (2004) EN 1992-1-2: Design of concrete structures - Part 1-2: General rules—Structural fire design. Brussels, Belgium

Eurocode 1 (2002) EN 1991-1-2: Actions on structures—Part 1-2: General actions—actions on structures exposed to fire. Brussels, Belgium

Eurocode 3 (2005) EN 1993-1-2: Design of steel structures—Part 1-2: General rules—Structural fire design. Brussels, Belgium

Kodur V, Banerji S, Solhmirzaei R (2020) Effect of temperature on thermal properties of ultrahigh-performance concrete. J Mater Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003286

Kmiecik P, Kamiński M (2011) Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Arch Civil Mech Eng 11(3):623–636

Nasrin S, Ibrahim A (2018) Finite-element modeling of UHPC hybrid bridge deck connections. Int J Adv Struct Eng 10:199–210. https://doi.org/10.1007/s40091-018-0192-2

ASTM E119 (2018) Standard test methods for fire tests of building construction and materials. West Conshohocken, PA, USA

Zhang G, Kodur VKR, Hou W, He S (2017) Evaluating fire resistance of prestressed concrete bridge girders. Struct Eng Mech 62:663–674. https://doi.org/10.12989/sem.2017.62.6.663