Evaluated Material Properties for a Sintered alpha‐Alumina

Journal of the American Ceramic Society - Tập 80 Số 8 - Trang 1919-1928 - 1997
Munro MUNRO1,2
1Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
2*Member, American Ceramic Society.

Tóm tắt

Results of a data evaluation exercise are presented for a particular specification of sintered alpha‐alumina (mass fraction of Al2O3, ≥0.995; relative density (rho/rhotheoretical), ≥0.98; and nominal grain size, 5 μm). A comprehensive set of material property data is established based on published physical, mechanical, and thermal properties of alumina specimens that conform to the constraints of the material specification. The criteria imposed on the properties are that the values should be derived from independent experimental studies, that the values for physically related properties should be mutually self‐consistent, and that the sets of values should be compatible with established material property relations. The properties assessed in this manner include crystallography, thermal expansion, density, sound velocity, elastic modulus, shear modulus, Poisson's ratio, bulk modulus, compressive strength, flexural strength, Weibull characteristic strength, Weibull modulus, tensile strength, hardness, fracture toughness, creep rate, creep rate stress exponent, creep activation energy, friction coefficient, wear coefficient, melting point, specific heat, thermal conductivity, and thermal diffusivity.

Từ khóa


Tài liệu tham khảo

Gitzen W. H., 1970, Alumina as a Ceramic Material, 1

Kleiner R. N., 1975, Metals, Composites, and Refractory Materials, 355

1981, Single Oxides

Hübner E. D. H., 1984, Alumina Processing, Properties, and Applications, 1

Morrell R., 1987, Handbook of Properties of Technical and Engineering Ceramics, 1

Hart L. D., 1990, Alumina Chemicals: Science and Technology Handbook, 1

Komeya K., 1994, Structure and Properties of Ceramics, 517

Quinn G. D., 1989, Flexure Strength of Advanced Ceramics: A Round Robin Exercise

1991, Enabling Technologies for Unified Life‐Cycle Engineering of Structural Components

Rumble J., 1992, Materials STEP into the Future, Adv. Mater. Processes, 142, 23

Hyde B. G., 1994, Crystal Structures of Principal Ceramic Materials, Mater. Sci. Technol., 11, 1

W. H.Gitzen; see Ref. 1 p.64.

10.1116/1.573700

Schlesinger M. E., 1991, Ceramics and Glasses, 883

Aldebert P., 1994, α‐Al2O3: A High‐Temperature Thermal Expansion Standard, High Temp.-High Pressures, 16, 127

Taylor B. N., 1993, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results

Swanson H. E., 1953, National Bureau of Standards Circular, 20

10.1524/zkri.1962.117.2-3.235

10.1524/zkri.1967.125.125.377

Grum‐Grzhimailo S. V., 1980, Ruby and Sapphire, 2

10.1107/S0567740880002981

10.1111/j.1151-2916.1962.tb11159.x

Amatuni A. N., 1976, Standard Samples for Dilatometry, High Temp.-High Pressures, 8, 565

R.Morrell; see Ref. 5 p.19.

M.Miyayama K.Koumoto andH.Yanagida “Engineering Properties of Single Oxides”; see Ref. 14 pp.748–57.

10.1111/j.1151-2916.1966.tb13283.x

10.1063/1.1655961

1995, Annual Book of ASTM Standards

10.1029/JB094iB06p07588

10.1007/BF00548172

Freiman S. W., 1988, Brittle Fracture Behavior of Ceramics, Am. Ceram. Soc. Bull., 67, 392

10.1111/j.1151-2916.1991.tb08259.x

1995, Annual Book of ASTM Standards, 356

Davies D. G. S., 1973, The Statistical Approach to Engineering Design in Ceramics, Proc. Br. Ceram. Soc., 22, 429

10.1111/j.1151-2916.1964.tb12994.x

Kübler J., 1993, Mechanische Charakterisierung von Hochleistungskeramik Festigkeitsuntersuchung, 77

10.1016/0956-716X(94)90117-1

10.1111/j.1151-2916.1994.tb04555.x

10.1007/BF00556093

Wefers K., 1990, Alumina Chemicals: Science and Technology Handbook, 13

10.1007/978-1-4757-4732-4_1

Anderson R. M., 1989, Testing Advanced Ceramics, Adv. Mater. Processes, 135, 31

1995, Annual Book of ASTM Standards

Meyer E., 1908, Unterschugen über Prüfung and Härte, Z. Ver. Dtsch. Ing., 52, 645

Mott B. W., 1956, Micro‐Identation Hardness Testing, 101

Sargent P. M., 1986, Microindentation Techniques in Materials Science and Engineering, 160

10.2472/jsms.35.41

Wang Y. S., 1990, Proceedings of the Japan International Tribology Conference, 1225

10.1111/j.1151-2916.1995.tb08399.x

Evans R. W., 1991, Creep Property Characterization of Ceramics, Met. Mater. (Inst. Met.), 7, 363

10.1007/978-94-011-3388-3_34

10.1063/1.1736104

10.1111/j.1151-2916.1991.tb04322.x

10.1111/j.1151-2916.1994.tb04580.x

Bowden F. P., 1964, The Friction and Lubrication of Solids, 350

Hsu S. M., 1991, Ceramics Wear Maps: Concept and Method Development, Lubr. Eng., 47, 49

10.1111/j.1151-2916.1991.tb04340.x

10.1080/10402008908981900

R.Morrell; see Ref. 5 p.17.

10.1111/j.1151-2916.1960.tb13623.x

10.1111/j.1151-2916.1965.tb11788.x

R.Morrell; see Ref. 5 p.20.

10.1007/BF00556087

Wachtman J. B., 1996, Mechanical Properties of Ceramics, 89