EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes

Leukemia - Tập 26 Số 9 - Trang 1908-1975 - 2012
Jacques J. M. van Dongen1, Ludovic Lhermitte2, Sebastian Böttcher3, Júlia Almeida4, V H J van der Velden1, Juan Flores‐Montero4, Andy C. Rawstron5, Vahid Asnafi2, Quentin Lécrevisse4, Paulo Lúcio6, Ester Mejstříková7, Tomasz Szczepański8, Tomáš Kalina7, Ruth de Tute5, Monika Brüggemann3, Łukasz Sędek8, Matthew Cullen5, Anton W. Langerak1, A Mendonça6, Elizabeth Macintyre2, M Martín-Ayuso9, Ondřej Hrušák7, María‐Belén Vidriales10, Alberto Órfão4
1Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
2Department of Hematology, Hôpital Necker-Enfants-Malades (AP-HP) and UMR CNRS 8147, University of Paris Descartes, Paris, France
3Second Department of Medicine, University Hospital of Schleswig Holstein, Campus Kiel (UNIKIEL), Kiel, Germany
4Department of Medicine and Cytometry Service, Cancer Research Center (IBMCC-CSIC), University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca
5Haematological Malignancy Diagnostic Service (HMDS), University of Leeds (UNIVLEEDS), Leeds, UK
6Department of Hematology, Portuguese Institute of Oncology (IPOLFG), Lisbon, Portugal
7Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University (DPH/O), Prague, Czech Republic
8Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), Zabrze, Poland
9Cytognos SL, Salamanca, Spain
10Department of Hematology, University Hospital Salamanca (HUS) and IBSAL, Salamanca, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Foon KA, Todd RF . Immunologic classification of leukemia and lymphoma. Blood 1986; 68: 1–31.

van Dongen JJ, Adriaansen HJ, Hooijkaas H . Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes. Neth J Med 1988; 33: 298–314.

Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 439.

Macedo A, Orfao A, Vidriales MB, Lopez-Berges MC, Valverde B, Gonzalez M et al. Characterization of aberrant phenotypes in acute myeloblastic leukemia. Ann Hematol 1995; 70: 189–194.

Lucio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13: 419–427.

Orfao A, Schmitz G, Brando B, Ruiz-Arguelles A, Basso G, Braylan R et al. Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions. Clin Chem 1999; 45: 1708–1717.

Basso G, Buldini B, De Zen L, Orfao A . New methodologic approaches for immunophenotyping acute leukemias. Haematologica 2001; 86: 675–692.

Szczepanski T, van der Velden VH, van Dongen JJ . Flow-cytometric immunophenotyping of normal and malignant lymphocytes. Clin Chem Lab Med 2006; 44: 775–796.

Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008; 93: 431–438.

Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores J et al. The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors. Leukemia 2008; 22: 1175–1183.

van Lochem EG, van der Velden VH, Wind HK, te Marvelde JG, Westerdaal NA, van Dongen JJ . Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom 2004; 60: 1–13.

Rothe G, Schmitz G . Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia 1996; 10: 877–895.

Bene MC, Nebe T, Bettelheim P, Buldini B, Bumbea H, Kern W et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia 2011; 25: 567–574.

van de Loosdrecht AA, Alhan C, Bene MC, Della Porta MG, Drager AM, Feuillard J et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica 2009; 94: 1124–1134.

Paietta E . How to optimize multiparameter flow cytometry for leukaemia/lymphoma diagnosis. Best Pract Res Clin Haematol 2003; 16: 671–683.

Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M et alEuroFlow standardization of flow cytometry instrument settings and immunophenotyping protocols. Leukemia 2012 (submitted).

Bellido M, Rubiol E, Ubeda J, Estivill C, Lopez O, Manteiga R et al. Rapid and simple immunophenotypic characterization of lymphocytes using a new test. Haematologica 1998; 83: 681–685.

Barrena S, Almeida J, Garcia-Macias MC, Lopez A, Rasillo A, Sayagues JM et al. Flow cytometry immunophenotyping of fine-needle aspiration specimens: utility in the diagnosis and classification of non-Hodgkin lymphomas. Histopathology 2011; 58: 906–918.

Ratei R, Karawajew L, Lacombe F, Jagoda K, Del Poeta G, Kraan J et al. Discriminant function analysis as decision support system for the diagnosis of acute leukemia with a minimal four color screening panel and multiparameter flow cytometry immunophenotyping. Leukemia 2007; 21: 1204–1211.

Costa ES, Arroyo ME, Pedreira CE, Garcia-Marcos MA, Tabernero MD, Almeida J et al. A new automated flow cytometry data analysis approach for the diagnostic screening of neoplastic B-cell disorders in peripheral blood samples with absolute lymphocytosis. Leukemia 2006; 20: 1221–1230.

Braylan RC, Orfao A, Borowitz MJ, Davis BH . Optimal number of reagents required to evaluate hematolymphoid neoplasias: results of an international consensus meeting. Cytometry 2001; 46: 23–27.

Ruiz-Arguelles A, Rivadeneyra-Espinoza L, Duque RE, Orfao A . Report on the second Latin American consensus conference for flow cytometric immunophenotyping of hematological malignancies. Cytometry B Clin Cytom 2006; 70: 39–44.

Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ et al2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom 2007; 72 (Suppl 1): S14–S22.

Craig FE, Foon KA . Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008; 111: 3941–3967.

Davis BH, Holden JT, Bene MC, Borowitz MJ, Braylan RC, Cornfield D et al2006 Bethesda International Consensus recommendations on the flow cytometric immunophenotypic analysis of hematolymphoid neoplasia: medical indications. Cytometry B Clin Cytom 2007; 72 (Suppl 1): S5–S13.

Stetler-Stevenson M, Ahmad E, Barnett D, Braylan R, DiGiuseppe J, Marti G et al Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells. Approved guideline – 2nd edn. CLSI document H43-A2 ed. Clinical and Laboratory Standards Institute: Wayne, PA, 2007.

Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

Stewart CC, Behm FG, Carey JL, Cornbleet J, Duque RE, Hudnall SD et al. U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: selection of antibody combinations. Cytometry 1997; 30: 231–235.

Ruiz-Arguelles A, Duque RE, Orfao A . Report on the first Latin American Consensus Conference for Flow Cytometric Immunophenotyping of Leukemia. Cytometry 1998; 34: 39–42.

Maecker HT, Frey T, Nomura LE, Trotter J . Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 2004; 62: 169–173.

Costa ES, Pedreira CE, Barrena S, Lecrevisse Q, Flores J, Quijano S et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia 2010; 24: 1927–1933.

Pedreira CE, Costa ES, Barrena S, Lecrevisse Q, Almeida J, van Dongen JJ et al. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry A 2008; 73: 834–846.

Costa ES, Peres RT, Almeida J, Lecrevisse Q, Arroyo ME, Teodosio C et al. Harmonization of light scatter and fluorescence flow cytometry profiles obtained after staining peripheral blood leucocytes for cell surface-only versus intracellular antigens with the Fix & Perm reagent. Cytometry B Clin Cytom 2010; 78: 11–20.

Borowitz MJ, Chan JKC . B lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 168–175.

Borowitz MJ, Chan JKC . T lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 176–178.

Borowitz MJ, Béné MC, Harris NL, Porwit A, Matutes E . Acute leukaemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 150–155.

van den Ancker W, Terwijn M, Westers TM, Merle PA, van Beckhoven E, Drager AM et al. Acute leukemias of ambiguous lineage: diagnostic consequences of the WHO2008 classification. Leukemia 2010; 24: 1392–1396.

Mejstrikova E, Volejnikova J, Fronkova E, Zdrahalova K, Kalina T, Sterba J et al. Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria. Haematologica 2010; 95: 928–935.

Stetler-Stevenson M, Davis B, Wood B, Braylan R . 2006 Bethesda International Consensus Conference on Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasia. Cytometry B Clin Cytom 2007; 72 (Suppl 1): S3.

Matutes E, Pickl WF, Van't Veer M, Morilla R, Swansbury J, Strobl H et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood 2011; 117: 3163–3171.

Orfao A, Chillon MC, Bortoluci AM, Lopez-Berges MC, Garcia-Sanz R, Gonzalez M et al. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. Haematologica 1999; 84: 405–412.

De Zen L, Orfao A, Cazzaniga G, Masiero L, Cocito MG, Spinelli M et al. Quantitative multiparametric immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML1 ALLs identification. Leukemia 2000; 14: 1225–1231.

Tabernero MD, Bortoluci AM, Alaejos I, Lopez-Berges MC, Rasillo A, Garcia-Sanz R et al. Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expresssion. Leukemia 2001; 15: 406–414.

Orfao A, Ortuno F, de Santiago M, Lopez A, San Miguel J . Immunophenotyping of acute leukemias and myelodysplastic syndromes. Cytometry A 2004; 58: 62–71.

Hrusak O, Porwit-MacDonald A . Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 2002; 16: 1233–1258.

Vaskova M, Mejstrikova E, Kalina T, Martinkova P, Omelka M, Trka J et al. Transfer of genomics information to flow cytometry: expression of CD27 and CD44 discriminates subtypes of acute lymphoblastic leukemia. Leukemia 2005; 19: 876–878.

Szczepanski T, Orfao A, van der Velden VH . San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

van Dongen JJ, Krissansen GW, Wolvers-Tettero IL, Comans-Bitter WM, Adriaansen HJ, Hooijkaas H et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood 1988; 71: 603–612.

van Grotel M, van den Heuvel-Eibrink MM, van Wering ER, van Noesel MM, Kamps WA, Veerman AJ et al. CD34 expression is associated with poor survival in pediatric T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2008; 51: 737–740.

Hurwitz CA, Raimondi SC, Head D, Krance R, Mirro J, Kalwinsky DK et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 1992; 80: 3182–3188.

Kita K, Nakase K, Miwa H, Masuya M, Nishii K, Morita N et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood 1992; 80: 470–477.

Venditti A, Del Poeta G, Buccisano F, Tamburini A, Cox-Froncillo MC, Aronica G et al. Prognostic relevance of the expression of Tdt and CD7 in 335 cases of acute myeloid leukemia. Leukemia 1998; 12: 1056–1063.

Suggs JL, Cruse JM, Lewis RE . Aberrant myeloid marker expression in precursor B-cell and T-cell leukemias. Exp Mol Pathol 2007; 83: 471–473.

Bhargava P, Kallakury BV, Ross JS, Azumi N, Bagg A . CD79a is heterogeneously expressed in neoplastic and normal myeloid precursors and megakaryocytes in an antibody clone-dependent manner. Am J Clin Pathol 2007; 128: 306–313.

Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res 2004; 64: 7399–7404.

Uckun FM, Gaynon PS, Sensel MG, Nachman J, Trigg ME, Steinherz PG et al. Clinical features and treatment outcome of childhood T-lineage acute lymphoblastic leukemia according to the apparent maturational stage of T-lineage leukemic blasts: a Children's Cancer Group study. J Clin Oncol 1997; 15: 2214–2221.

Khalidi HS, Chang KL, Medeiros LJ, Brynes RK, Slovak ML, Murata-Collins JL et al. Acute lymphoblastic leukemia. Survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol 1999; 111: 467–476.

Lewis RE, Cruse JM, Sanders CM, Webb RN, Suggs JL . Aberrant expression of T-cell markers in acute myeloid leukemia. Exp Mol Pathol 2007; 83: 462–463.

Borowitz MJ, Guenther KL, Shults KE, Stelzer GT . Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993; 100: 534–540.

Lacombe F, Durrieu F, Briais A, Dumain P, Belloc F, Bascans E et al. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia 1997; 11: 1878–1886.

Vial JP, Lacombe F . Immunophenotyping of acute leukemia: utility of CD45 for blast cell identification. Methods Cell Biol 2001; 64: 343–358.

Pilozzi E, Pulford K, Jones M, Muller-Hermelink HK, Falini B, Ralfkiaer E et al. Co-expression of CD79a (JCB117) and CD3 by lymphoblastic lymphoma. J Pathol 1998; 186: 140–143.

Hashimoto M, Yamashita Y, Mori N . Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukaemias. J Pathol 2002; 197: 341–347.

Asnafi V, Beldjord K, Garand R, Millien C, Bahloul M, LeTutour P et al. IgH DJ rearrangements within T-ALL correlate with cCD79a expression, an immature/TCRgammadelta phenotype and absence of IL7Ralpha/CD127 expression. Leukemia 2004; 18: 1997–2001.

Escribano L, Orfao A, Diaz-Agustin B, Villarrubia J, Cervero C, Lopez A et al. Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications. Blood 1998; 91: 2731–2736.

Han K, Kim Y, Lee J, Lim J, Lee KY, Kang CS et al. Human basophils express CD22 without expression of CD19. Cytometry 1999; 37: 178–183.

Martin-Martin L, Almeida J, Hernandez-Campo PM, Sanchez ML, Lecrevisse Q, Orfao A . Immunophenotypical morphologic, and functional characterization of maturation-associated plasmacytoid dendritic cell subsets in normal adult human bone marrow. Transfusion 2009; 49: 1692–1708.

Bell JJ, Bhandoola A . The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 2008; 452: 764–767.

Babusikova O, Stevulova L, Fajtova M . Immunophenotyping parameters as prognostic factors in T-acute leukemia patients. Neoplasma 2009; 56: 508–513.

Taub JW . Early T-cell precursor acute lymphoblastic leukaemia. Lancet Oncol 2009; 10: 105–106.

Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009; 10: 147–156.

Carulli G, Cannizzo E, Zucca A, Buda G, Orciuolo E, Marini A et al. CD45 expression in low-grade B-cell non-Hodgkin's lymphomas. Leuk Res 2008; 32: 263–267.

Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW . Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol 2009; 132: 940–949.

Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

Lenz G, Staudt LM . Aggressive lymphomas. N Engl J Med 2010; 362: 1417–1429.

Davis BH, Foucar K, Szczarkowski W, Ball E, Witzig T, Foon KA et al. U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: medical indications. Cytometry 1997; 30: 249–263.

Sanchez ML, Almeida J, Vidriales B, Lopez-Berges MC, Garcia-Marcos MA, Moro MJ et al. Incidence of phenotypic aberrations in a series of 467 patients with B chronic lymphoproliferative disorders: basis for the design of specific four-color stainings to be used for minimal residual disease investigation. Leukemia 2002; 16: 1460–1469.

Gorczyca W, Weisberger J, Liu Z, Tsang P, Hossein M, Wu CD et al. An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry 2002; 50: 177–190.

Lima M, Almeida J, Montero AG, Teixeira MA, Queiros ML, Santos AH et al. Clinicobiological, immunophenotypic, and molecular characteristics of monoclonal CD56-/+dim chronic natural killer cell large granular lymphocytosis. Am J Pathol 2004; 165: 1117–1127.

Lima M, Almeida J, Teixeira MA, Santos AH, Queiros ML, Fonseca S et al. Reactive phenotypes after acute and chronic NK-cell activation. J Biol Regul Homeost Agents 2004; 18: 331–334.

Cady FM, Morice WG . Flow cytometric assessment of T-cell chronic lymphoproliferative disorders. Clin Lab Med 2007; 27: 513–532, vi.

Hultin LE, Hausner MA, Hultin PM, Giorgi JV . CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry 1993; 14: 196–204.

Khokhar FA, Payne WD, Talwalkar SS, Jorgensen JL, Bueso-Ramos CE, Medeiros LJ et al. Angioimmunoblastic T-cell lymphoma in bone marrow: a morphologic and immunophenotypic study. Hum Pathol 2010; 41: 79–87.

Bos GM, van Putten WL, van der Holt B, van den Bent M, Verdonck LF, Hagenbeek A . For which patients with aggressive non-Hodgkin's lymphoma is prophylaxis for central nervous system disease mandatory? Dutch HOVON Group. Ann Oncol 1998; 9: 191–194.

Hollender A, Kvaloy S, Nome O, Skovlund E, Lote K, Holte H . Central nervous system involvement following diagnosis of non-Hodgkin's lymphoma: a risk model. Ann Oncol 2002; 13: 1099–1107.

Bierman P, Giglio P . Diagnosis and treatment of central nervous system involvement in non-Hodgkin's lymphoma. Hematol Oncol Clin North Am 2005; 19: 597–609, v.

Hegde U, Filie A, Little RF, Janik JE, Grant N, Steinberg SM et al. High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: the role of flow cytometry versus cytology. Blood 2005; 105: 496–502.

Bromberg JE, Breems DA, Kraan J, Bikker G, van der Holt B, Smitt PS et al. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology 2007; 68: 1674–1679.

Quijano S, Lopez A, Sancho JM, Panizo C, Deben G, Castilla C et al. Identification of leptomeningeal disease in aggressive B-cell non-Hodgkin's lymphoma: improved sensitivity of flow cytometry. J Clin Oncol 2009; 27: 1462–1469.

Sancho JM, Orfao A, Quijano S, Garcia O, Panizo C, Perez-Ceballos E et al. Clinical significance of occult cerebrospinal fluid involvement assessed by flow cytometry in non-Hodgkin's lymphoma patients at high risk of central nervous system disease in the rituximab era. Eur J Haematol 2010; 85: 321–328.

Chan CC . Molecular pathology of primary intraocular lymphoma. Trans Am Ophthalmol Soc 2003; 101: 275–292.

Coupland SE, Heimann H, Bechrakis NE . Primary intraocular lymphoma: a review of the clinical, histopathological and molecular biological features. Graefes Arch Clin Exp Ophthalmol 2004; 242: 901–913.

Davis JL, Solomon D, Nussenblatt RB . Palestine AG, Chan CC. Immunocytochemical staining of vitreous cells. Indications, techniques, and results. Ophthalmology 1992; 99: 250–256.

Whitcup SM, Stark-Vancs V, Wittes RE, Solomon D, Podgor MJ, Nussenblatt RB et al. Association of interleukin 10 in the vitreous and cerebrospinal fluid and primary central nervous system lymphoma. Arch Ophthalmol 1997; 115: 1157–1160.

Freilich RJ, Krol G, DeAngelis LM . Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol 1995; 38: 51–57.

Windhagen A, Maniak S, Heidenreich F . Analysis of cerebrospinal fluid cells by flow cytometry and immunocytochemistry in inflammatory central nervous system diseases: comparison of low- and high-density cell surface antigen expression. Diagn Cytopathol 1999; 21: 313–318.

Schinstine M, Filie AC, Wilson W, Stetler-Stevenson M, Abati A . Detection of malignant hematopoietic cells in cerebral spinal fluid previously diagnosed as atypical or suspicious. Cancer 2006; 108: 157–162.

White VA, Gascoyne RD, Paton KE . Use of the polymerase chain reaction to detect B- and T-cell gene rearrangements in vitreous specimens from patients with intraocular lymphoma. Arch Ophthalmol 1999; 117: 761–765.

Coupland SE, Hummel M, Muller HH, Stein H . Molecular analysis of immunoglobulin genes in primary intraocular lymphoma. Invest Ophthalmol Vis Sci 2005; 46: 3507–3514.

Wilson DJ, Braziel R, Rosenbaum JT . Intraocular lymphoma. Immunopathologic analysis of vitreous biopsy specimens. Arch Ophthalmol 1992; 110: 1455–1458.

Davis JL, Viciana AL, Ruiz P . Diagnosis of intraocular lymphoma by flow cytometry. Am J Ophthalmol 1997; 124: 362–372.

French CA, Dorfman DM, Shaheen G, Cibas ES . Diagnosing lymphoproliferative disorders involving the cerebrospinal fluid: increased sensitivity using flow cytometric analysis. Diagn Cytopathol 2000; 23: 369–374.

Subira D, Castanon S, Aceituno E, Hernandez J, Jimenez-Garofano C, Jimenez A et al. Flow cytometric analysis of cerebrospinal fluid samples and its usefulness in routine clinical practice. Am J Clin Pathol 2002; 117: 952–958.

Nuckel H, Novotny JR, Noppeney R, Savidou I, Duhrsen U . Detection of malignant haematopoietic cells in the cerebrospinal fluid by conventional cytology and flow cytometry. Clin Lab Haematol 2006; 28: 22–29.

Missotten T, Tielemans D, Bromberg JE, Van Hagen PM, Van Lochem EG, Van Dongen JJM et al. Multi-color flowcytometric immunophenotyping is a valuable tool for detection of intra-ocular lymphoma in patients presenting with a (pseudo)uveitis. Ophthalmology 2012; in press.

Kraan J, Gratama JW, Haioun C, Orfao A, Plonquet A, Porwit A et alFlow cytometric immunophenotyping of cerebrospinal fluid. Curr Protoc Cytom 2008; Chapter 6: Unit 6 25.

McKenna RW, Kyle RA, Kuehi WM, Grogan TM, Harris NL, Coupland RW . Plasma cell neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 200–213.

Kyle RA, Rajkumar SV . Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol 2007; 20: 637–664.

Paiva B, Vidriales MB, Perez JJ, Lopez-Berges MC, Garcia-Sanz R, Ocio EM et al. The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis. Blood 2011; 117: 3613–3616.

Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 2010; 78: 239–252.

Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007; 110: 2586–2592.

Mateo G, Montalban MA, Vidriales MB, Lahuerta JJ, Mateos MV, Gutierrez N et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol 2008; 26: 2737–2744.

Harada H, Kawano MM, Huang N, Harada Y, Iwato K, Tanabe O et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993; 81: 2658–2663.

Almeida J, Orfao A, Mateo G, Ocqueteau M, Garcia-Sanz R, Moro MJ et al. Immunophenotypic and DNA content characteristics of plasma cells in multiple myeloma and monoclonal gammopathy of undetermined significance. Pathol Biol (Paris) 1999; 47: 119–127.

Lima M, Teixeira Mdos A, Fonseca S, Goncalves C, Guerra M, Queiros ML et al. Immunophenotypic aberrations, DNA content, and cell cycle analysis of plasma cells in patients with myeloma and monoclonal gammopathies. Blood Cells Mol Dis 2000; 26: 634–645.

Ely SA, Knowles DM . Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol 2002; 160: 1293–1299.

Lin P, Owens R, Tricot G, Wilson CS . Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 2004; 121: 482–488.

Bataille R, Jego G, Robillard N, Barille-Nion S, Harousseau JL, Moreau P et al. The phenotype of normal, reactive and malignant plasma cells. Identification of "many and multiple myelomas" and of new targets for myeloma therapy. Haematologica 2006; 91: 1234–1240.

Moreau P, Robillard N, Jego G, Pellat C, Le Gouill S, Thoumi S et al. Lack of CD27 in myeloma delineates different presentation and outcome. Br J Haematol 2006; 132: 168–170.

Bahlis NJ, King AM, Kolonias D, Carlson LM, Liu HY, Hussein MA et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 2007; 109: 5002–5010.

Perez-Andres M, Almeida J, Martin-Ayuso M, De Las Heras N, Moro MJ, Martin-Nunez G et al. Soluble and membrane levels of molecules involved in the interaction between clonal plasma cells and the immunological microenvironment in multiple myeloma and their association with the characteristics of the disease. Int J Cancer 2009; 124: 367–375.

Cannizzo E, Bellio E, Sohani AR, Hasserjian RP, Ferry JA, Dorn ME et al. Multiparameter immunophenotyping by flow cytometry in multiple myeloma: The diagnostic utility of defining ranges of normal antigenic expression in comparison to histology. Cytometry B Clin Cytom 2010; 78: 231–238.

Horan PK, Slezak SE, Poste G . Improved flow cytometric analysis of leukocyte subsets: simultaneous identification of five cell subsets using two-color immunofluorescence. Proc Natl Acad Sci USA 1986; 83: 8361–8365.

McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH . Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001; 98: 2498–2507.

Digiuseppe JA . Acute lymphoblastic leukemia: diagnosis and detection of minimal residual disease following therapy. Clin Lab Med 2007; 27: 533–549, vi.

Borowitz MJ, Hunger SP, Carroll AJ, Shuster JJ, Pullen DJ, Steuber CP et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993; 82: 1086–1091.

Huh YO, Smith TL, Collins P, Bueso-Ramos C, Albitar M, Kantarjian HM et al. Terminal deoxynucleotidyl transferase expression in acute myelogenous leukemia and myelodysplasia as determined by flow cytometry. Leuk Lymphoma 2000; 37: 319–331.

Skoog L, Hagerstrom T, Reizenstein P, Ost A . Detection of TdT in AML blasts by immunological and biochemical techniques. Anticancer Res 1986; 6: 281–282.

Adriaansen HJ, Hooijkaas H, Kappers-Klunne MC, Hahlen K . van't Veer MB, van Dongen JJ. Double marker analysis for terminal deoxynucleotidyl transferase and myeloid antigens in acute nonlymphocytic leukemia patients and healthy subjects. Haematol Blood Transfus 1990; 33: 41–49.

Schlieben S, Borkhardt A, Reinisch I, Ritterbach J, Janssen JW, Ratei R et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia 1996; 10: 957–963.

Kalina T, Vaskova M, Mejstrikova E, Madzo J, Trka J, Stary J et al. Myeloid antigens in childhood lymphoblastic leukemia: clinical data point to regulation of CD66c distinct from other myeloid antigens. BMC Cancer 2005; 5: 38.

Owaidah TM, Rawas FI, Al Khayatt MF, Elkum NB . Expression of CD66c and CD25 in acute lymphoblastic leukemia as a predictor of the presence of BCR/ABL rearrangement. Hematol Oncol Stem Cell Ther 2008; 1: 34–37.

Sugita K, Mori T, Yokota S, Kuroki M, Koyama TO, Inukai T et al. The KOR-SA3544 antigen predominantly expressed on the surface of Philadelphia chromosome-positive acute lymphoblastic leukemia cells is nonspecific cross-reacting antigen-50/90 (CD66c) and invariably expressed in cytoplasm of human leukemia cells. Leukemia 1999; 13: 779–785.

Ludwig WD, Rieder H, Bartram CR, Heinze B, Schwartz S, Gassmann W et al. Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. Blood 1998; 92: 1898–1909.

Parkin JL, Arthur DC, Abramson CS, McKenna RW, Kersey JH, Heideman RL et al. Acute leukemia associated with the t(4;11) chromosome rearrangement: ultrastructural and immunologic characteristics. Blood 1982; 60: 1321–1331.

Behm FG, Smith FO, Raimondi SC, Pui CH, Bernstein ID . Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood 1996; 87: 1134–1139.

Borkhardt A, Cazzaniga G, Viehmann S, Valsecchi MG, Ludwig WD, Burci L et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood 1997; 90: 571–577.

Borowitz MJ, Rubnitz J, Nash M, Pullen DJ, Camitta B . Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia 1998; 12: 1764–1770.

Gandemer V, Aubry M, Roussel M, Rio AG, de Tayrac M, Vallee A et al. CD9 expression can be used to predict childhood TEL/AML1-positive acute lymphoblastic leukemia: proposal for an accelerated diagnostic flowchart. Leuk Res 2010; 34: 430–437.

Weir EG, Cowan K, LeBeau P, Borowitz MJ . A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999; 13: 558–567.

Campana D, Coustan-Smith E . Minimal residual disease studies by flow cytometry in acute leukemia. Acta Haematol 2004; 112: 8–15.

Dworzak MN, Froschl G, Printz D, Mann G, Potschger U, Muhlegger N et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99: 1952–1958.

Basso G, Veltroni M, Valsecchi MG, Dworzak MN, Ratei R, Silvestri D et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009; 27: 5168–5174.

Bruggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia 2010; 24: 521–535.

Szczepanski T . Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia 2007; 21: 622–626.

Campana D . Minimal residual disease studies in acute leukemia. Am J Clin Pathol 2004, 122(Suppl):: S47–S57.

Coustan-Smith E, Ribeiro RC, Stow P, Zhou Y, Pui CH, Rivera GK et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006; 108: 97–102.

Lucio P, Gaipa G, van Lochem EG, van Wering ER, Porwit-MacDonald A, Faria T et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia 2001; 15: 1185–1192.

Munoz L, Nomdedeu JF, Lopez O, Carnicer MJ, Bellido M, Aventin A et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 2001; 86: 1261–1269.

Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 2005; 19: 1376–1383.

Muzzafar T, Medeiros LJ, Wang SA, Brahmandam A, Thomas DA, Jorgensen JL . Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia: utility in detection of minimal residual disease by flow cytometry. Am J Clin Pathol 2009; 132: 692–698.

Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui CH et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001; 97: 2115–2120.

Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003; 88: 1245–1252.

Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

Chiaretti S, Foa R . T-cell acute lymphoblastic leukemia. Haematologica 2009; 94: 160–162.

Crist WM, Shuster JJ, Falletta J, Pullen DJ, Berard CW, Vietti TJ et al. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group Study. Blood 1988; 72: 1891–1897.

De Keersmaecker K, Marynen P, Cools J . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2005; 90: 1116–1127.

Teitell MA, Pandolfi PP . Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol 2009; 4: 175–198.

Hoelzer D, Gokbuget N . T-cell lymphoblastic lymphoma and T-cell acute lymphoblastic leukemia: a separate entity? Clin Lymphoma Myeloma 2009; 9 (Suppl 3): S214–S221.

Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A . Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20: 1496–1510.

Burmeister T, Gokbuget N, Reinhardt R, Rieder H, Hoelzer D, Schwartz S . NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood 2006; 108: 3556–3559.

Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

Graux C, Stevens-Kroef M, Lafage M, Dastugue N, Harrison CJ, Mugneret F et al. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 2009; 23: 125–133.

Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101: 2693–2703.

Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

van Grotel M, Meijerink JP, Beverloo HB, Langerak AW, Buys-Gladdines JG, Schneider P et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica 2006; 91: 1212–1221.

Drexler HG, Thiel E, Ludwig WD . Acute myeloid leukemias expressing lymphoid-associated antigens: diagnostic incidence and prognostic significance. Leukemia 1993; 7: 489–498.

Ratei R, Sperling C, Karawajew L, Schott G, Schrappe M, Harbott J et al. Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia. Ann Hematol 1998; 77: 107–114.

Robertson PB, Neiman RS, Worapongpaiboon S, John K, Orazi A . 013 (CD99) positivity in hematologic proliferations correlates with TdT positivity. Mod Pathol 1997; 10: 277–282.

Dalmazzo LF, Jacomo RH, Marinato AF, Figueiredo-Pontes LL, Cunha RL, Garcia AB et al. The presence of CD56/CD16 in T-cell acute lymphoblastic leukaemia correlates with the expression of cytotoxic molecules and is associated with worse response to treatment. Br J Haematol 2009; 144: 223–229.

Fischer L, Gokbuget N, Schwartz S, Burmeister T, Rieder H, Bruggemann M et al. CD56 expression in T-cell acute lymphoblastic leukemia is associated with non-thymic phenotype and resistance to induction therapy but no inferior survival after risk-adapted therapy. Haematologica 2009; 94: 224–229.

Montero I, Rios E, Parody R, Perez-Hurtado JM, Martin-Noya A, Rodriguez JM . CD56 in T-cell acute lymphoblastic leukaemia: a malignant transformation of an early myeloid-lymphoid progenitor? Haematologica 2003; 88: ELT26.

Paietta E, Neuberg D, Richards S, Bennett JM, Han L, Racevskis J et al. Rare adult acute lymphocytic leukemia with CD56 expression in the ECOG experience shows unexpected phenotypic and genotypic heterogeneity. Am J Hematol 2001; 66: 189–196.

Ravandi F, Cortes J, Estrov Z, Thomas D, Giles FJ, Huh YO et al. CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. Leuk Res 2002; 26: 643–649.

Garnache-Ottou F, Chaperot L, Biichle S, Ferrand C, Remy-Martin JP, Deconinck E et al. Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood 2005; 105: 1256–1264.

Garnache-Ottou F, Feuillard J, Saas P . Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity? Br J Haematol 2007; 136: 539–548.

Facchetti F, Jones DM, Petrella T . Blastic plasmocytoid dendritic cell neoplasm. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 145–147.

Han X, Bueso-Ramos CE . Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol 2007; 127: 528–544.

Asnafi V, Buzyn A, Thomas X, Huguet F, Vey N, Boiron JM et al. Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study. Blood 2005; 105: 3072–3078.

Cavalcanti Junior GB, Savino W, Pombo-de-Oliveira MS . CD44 expression in T-cell lymphoblastic leukemia. Braz J Med Biol Res 1994; 27: 2259–2266.

Falcao RP, Garcia AB . Expression of CD45RA (naive) and CD45RO (memory) antigens in T-acute lymphoblastic leukaemia. Br J Haematol 1993; 85: 483–486.

Kawano S, Tatsumi E, Yoneda N, Tani A, Nakamura F . Expression pattern of CD45 RA/RO isoformic antigens in T-lineage neoplasms. Am J Hematol 1995; 49: 6–14.

Schiavone EM, Lo Pardo C, Di Noto R, Manzo C, Ferrara F, Vacca C et al. Expression of the leucocyte common antigen (LCA, CD45) isoforms RA and RO in acute haematological malignancies: possible relevance in the definition of new overlap points between normal and leukaemic haemopoiesis. Br J Haematol 1995; 91: 899–906.

Lhermitte L, de Labarthe A, Dupret C, Lapillonne H, Millien C, Landman-Parker J et al. Most immature T-ALLs express Ra-IL3 (CD123): possible target for DT-IL3 therapy. Leukemia 2006; 20: 1908–1910.

Campana D, Coustan-Smith E . Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 1–19.

Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000; 14: 816–825.

Dworzak MN, Froschl G, Printz D, Zen LD, Gaipa G, Ratei R et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004; 18: 703–708.

Roshal M, Fromm JR, Winter S, Dunsmore K, Wood BL . Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B Clin Cytom 2010; 78: 139–146.

Andrieu V, Radford-Weiss I, Troussard X, Chane C, Valensi F, Guesnu M et al. Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol 1996; 92: 855–865.

Adriaansen HJ, te Boekhorst PA, Hagemeijer AM, van der Schoot CE, Delwel HR, van Dongen JJ . Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood 1993; 81: 3043–3051.

Loken MR, van de Loosdrecht A, Ogata K, Orfao A, Wells DA . Flow cytometry in myelodysplastic syndromes: report from a working conference. Leuk Res 2008; 32: 5–17.

Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood 2001; 98: 979–987.

van de Loosdrecht AA, Westers TM, Westra AH, Drager AM, van der Velden VH, Ossenkoppele GJ . Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood 2008; 111: 1067–1077.

Malcovati L, Della Porta MG, Lunghi M, Pascutto C, Vanelli L, Travaglino E et al. Flow cytometry evaluation of erythroid and myeloid dysplasia in patients with myelodysplastic syndrome. Leukemia 2005; 19: 776–783.

Cherian S, Moore J, Bantly A, Vergilio JA, Klein P, Luger S et al. Peripheral blood MDS score: a new flow cytometric tool for the diagnosis of myelodysplastic syndromes. Cytometry B Clin Cytom 2005; 64: 9–17.

Aul C, Giagounidis A, Heinsch M, Germing U, Ganser A . Prognostic indicators and scoring systems for predicting outcome in patients with myelodysplastic syndromes. Rev Clin Exp Hematol 2004; 8: E1.

Della Porta MG, Malcovati L, Invernizzi R, Travaglino E, Pascutto C, Maffioli M et al. Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia 2006; 20: 549–555.

Font P, Subira D, Martinez Chamorro C, Castanon S, Arranz E, Ramiro S et al. Evaluation of CD7 and terminal deoxynucleotidyl transferase (TdT) expression in CD34+ myeloblasts from patients with myelodysplastic syndrome. Leuk Res 2006; 30: 957–963.

Cesana C, Klersy C, Brando B, Nosari A, Scarpati B, Scampini L et al. Prognostic value of circulating CD34+ cells in myelodysplastic syndromes. Leuk Res 2008; 32: 1715–1723.

Scott BL, Wells DA, Loken MR, Myerson D, Leisenring WM, Deeg HJ . Validation of a flow cytometric scoring system as a prognostic indicator for posttransplantation outcome in patients with myelodysplastic syndrome. Blood 2008; 112: 2681–2686.

Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood 2003; 102: 394–403.

Van de Loosdrecht AA, Ireland R, Kern W, Alhan C, Balleissen JS, Bene MC et al. Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes. Position paper of the European LeukemiaNet working group on flow cytometry in myelodysplastic syndromes. Leukemia 2012; (in press).

Van Bockstaele DR, Deneys V, Philippe J, Bernier M, Kestens L, Chatelain B et al. Belgian consensus recommendations for flow cytometric immunophenotyping. The Belgian Association for Cytometry/Belgische Vereniging voor Cytometrie/Association Belge de Cytometrie. Acta Clin Belg 1999; 54: 88–98.

Aguilar H, Alvarez-Errico D, Garcia-Montero AC, Orfao A, Sayos J, Lopez-Botet M . Molecular characterization of a novel immune receptor restricted to the monocytic lineage. J Immunol 2004; 173 (): 6703–6711.

Casasnovas RO, Slimane FK, Garand R, Faure GC, Campos L, Deneys V et al. Immunological classification of acute myeloblastic leukemias: relevance to patient outcome. Leukemia 2003; 17: 515–527.

Buhring HJ, Muller T, Herbst R, Cole S, Rappold I, Schuller W et al. The adhesion molecule E-cadherin and a surface antigen recognized by the antibody 9C4 are selectively expressed on erythroid cells of defined maturational stages. Leukemia 1996; 10: 106–116.

Lammers R, Giesert C, Grunebach F, Marxer A, Vogel W, Buhring HJ . Monoclonal antibody 9C4 recognizes epithelial cellular adhesion molecule, a cell surface antigen expressed in early steps of erythropoiesis. Exp Hematol 2002; 30: 537–545.

Vidriales MB, San-Miguel JF, Orfao A, Coustan-Smith E, Campana D . Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 2003; 16: 599–612.

Bahia DM, Yamamoto M, Chauffaille ML, Kimura EY, Bordin JO, Filgueiras MA et al. Aberrant phenotypes in acute myeloid leukemia: a high frequency and its clinical significance. Haematologica 2001; 86: 801–806.

Adriaansen HJ, van Dongen JJ, Hooijkaas H, Hahlen K, van 't Veer MB, Lowenberg B et al. Translocation (6;9) may be associated with a specific TdT-positive immunological phenotype in ANLL. Leukemia 1988; 2: 136–140.

Ribeiro E, Matarraz Sudon S, de Santiago M, Lima CS, Metze K, Giralt M et al. Maturation-associated immunophenotypic abnormalities in bone marrow B-lymphocytes in myelodysplastic syndromes. Leuk Res 2006; 30: 9–16.

Mauvieux L, Delabesse E, Bourquelot P, Radford-Weiss I, Bennaceur A, Flandrin G et al. NG2 expression in MLL rearranged acute myeloid leukaemia is restricted to monoblastic cases. Br J Haematol 1999; 107: 674–676.

Bueno C, Almeida J, Lucio P, Marco J, Garcia R, de Pablos JM et al. Incidence and characteristics of CD4(+)/HLA DRhi dendritic cell malignancies. Haematologica 2004; 89: 58–69.

van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 2005; 11: 6520–6527.

Escribano L, Orfao A, Villarrubia J, Diaz-Agustin B, Cervero C, Rios A et al. Immunophenotypic characterization of human bone marrow mast cells. A flow cytometric study of normal and pathological bone marrow samples. Anal Cell Pathol 1998; 16: 151–159.

Gassmann W, Loffler H . Acute megakaryoblastic leukemia. Leuk Lymphoma 1995; 18 (Suppl 1): 69–73.

Schernthaner GH, Hauswirth AW, Baghestanian M, Agis H, Ghannadan M, Worda C et al. Detection of differentiation- and activation-linked cell surface antigens on cultured mast cell progenitors. Allergy 2005; 60: 1248–1255.

Ghannadan M, Hauswirth AW, Schernthaner GH, Muller MR, Klepetko W, Schatzl G et al. Detection of novel CD antigens on the surface of human mast cells and basophils. Int Arch Allergy Immunol 2002; 127: 299–307.

Garnache-Ottou F, Feuillard J, Ferrand C, Biichle S, Trimoreau F, Seilles E et al. Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia. Br J Haematol 2009; 145: 624–636.

Yatomi Y, Yoneyama A, Nakahara K . Usefulness of CD9 detection in the diagnosis of acute megakaryoblastic leukemia. Eur J Haematol 2004; 72: 229–230.

Imamura N, Mtasiwa DM, Ota H, Inada T, Kuramoto A . Distribution of cell surface glycoprotein CD9 (P24) antigen on megakaryocyte lineage leukemias and cell lines. Am J Hematol 1990; 35: 65–67.

Di Noto R, Luciano L, Lo Pardo C, Ferrara F, Frigeri F, Mercuro O et al. JURL-MK1 (c-kit(high)/CD30-/CD40-) and JURL-MK2 (c-kit(low)/CD30+/CD40+) cell lines: 'two-sided' model for investigating leukemic megakaryocytopoiesis. Leukemia 1997; 11: 1554–1564.

van Daele PL, Beukenkamp BS, Geertsma-Kleinekoort WM, Valk PJ, van Laar JA, van Hagen PM et al. Immunophenotyping of mast cells: a sensitive and specific diagnostic tool for systemic mastocytosis. Neth J Med 2009; 67: 142–146.

Borowitz MJ, Craig FE, Digiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom 2010; 78: 211–230.

Escribano L, Diaz-Agustin B, Lopez A, Nunez Lopez R, Garcia-Montero A, Almeida J et al. Immunophenotypic analysis of mast cells in mastocytosis: When and how to do it. Proposals of the Spanish Network on Mastocytosis (REMA). Cytometry B Clin Cytom 2004; 58: 1–8.

Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

Haferlach C, Mecucci C, Schnittger S, Kohlmann A, Mancini M, Cuneo A et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009; 114: 3024–3032.

Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

Mature B-cell Neoplasm. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues 4th edn. International Agency for Research on Cancer: Lyon, 2008; pp 179–268.

The Non-Hodgkin's Lymphoma Classification Project A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 1997; 89: 3909–3918.

Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

Herrmann A, Hoster E, Zwingers T, Brittinger G, Engelhard M, Meusers P et al. Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol 2009; 27: 511–518.

Bottcher S, Ritgen M, Pott C, Bruggemann M, Raff T, Stilgenbauer S et al. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia 2004; 18: 1637–1645.

Quijano S, Lopez A, Rasillo A, Barrena S, Luz Sanchez M, Flores J et al. Association between the proliferative rate of neoplastic B cells, their maturation stage, and underlying cytogenetic abnormalities in B-cell chronic lymphoproliferative disorders: analysis of a series of 432 patients. Blood 2008; 111: 5130–5141.

Bottcher S, Ritgen M, Buske S, Gesk S, Klapper W, Hoster E et al. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica 2008; 93: 551–559.

Huang J, Fan G, Zhong Y, Gatter K, Braziel R, Gross G et al. Diagnostic usefulness of aberrant CD22 expression in differentiating neoplastic cells of B-cell chronic lymphoproliferative disorders from admixed benign B cells in four-color multiparameter flow cytometry. Am J Clin Pathol 2005; 123: 826–832.

Menendez P, Vargas A, Bueno C, Barrena S, Almeida J, De Santiago M et al. Quantitative analysis of bcl-2 expression in normal and leukemic human B-cell differentiation. Leukemia 2004; 18: 491–498.

Rawstron AC, de Tute R, Jack AS, Hillmen P . Flow cytometric protein expression profiling as a systematic approach for developing disease-specific assays: identification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens. Leukemia 2006; 20: 2102–2110.

Pedreira CE, Costa ES, Almeida J, Fernandez C, Quijano S, Flores J et al. A probabilistic approach for the evaluation of minimal residual disease by multiparameter flow cytometry in leukemic B-cell chronic lymphoproliferative disorders. Cytometry A 2008; 73A: 1141–1150.

Ravandi F, Kantarjian H, Jones D, Dearden C, Keating M, O'Brien S . Mature T-cell leukemias. Cancer 2005; 104: 1808–1818.

Foucar K . Mature T-cell leukemias including T-prolymphocytic leukemia, adult T-cell leukemia/lymphoma, and Sezary syndrome. Am J Clin Pathol 2007; 127: 496–510.

Jaffe ES . The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program 2009, 523–531.

Rudiger T, Geissinger E, Muller-Hermelink HK . 'Normal counterparts' of nodal peripheral T-cell lymphoma. Hematol Oncol 2006; 24: 175–180.

Rodriguez-Abreu D, Filho VB, Zucca E . Peripheral T-cell lymphomas, unspecified (or not otherwise specified): a review. Hematol Oncol 2008; 26: 8–20.

de Leval L, Bisig B, Thielen C, Boniver J, Gaulard P . Molecular classification of T-cell lymphomas. Crit Rev Oncol Hematol 2009; 72: 125–143.

Grogg KL, Attygalle AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A . Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 2005; 106: 1501–1502.

Yu H, Shahsafaei A, Dorfman DM . Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am J Clin Pathol 2009; 131: 33–41.

Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008; 111: 5496–5504.

Herling M, Khoury JD, Washington LT, Duvic M, Keating MJ, Jones D . A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood 2004; 104: 328–335.

Herling M, Patel KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood 2008; 111: 328–337.

Savage KJ . Peripheral T-cell lymphomas. Blood Rev 2007; 21: 201–216.

Jamal S, Picker LJ, Aquino DB, McKenna RW, Dawson DB, Kroft SH . Immunophenotypic analysis of peripheral T-cell neoplasms. A multiparameter flow cytometric approach. Am J Clin Pathol 2001; 116: 512–526.

Lima M, Almeida J, Teixeira MA, Queiros ML, Santos AH, Fonseca S et al. Utility of flow cytometry immunophenotyping and DNA ploidy studies for diagnosis and characterization of blood involvement in CD4+ Sezary's syndrome. Haematologica 2003; 88: 874–887.

Lima M, Almeida J, Teixeira MA, Alguero C, Santos AH, Balanzategui A et al. TCRalphabeta+/CD4+ large granular lymphocytosis: a new clonal T-cell lymphoproliferative disorder. Am J Pathol 2003; 163: 763–771.

Karube K, Aoki R, Nomura Y, Yamamoto K, Shimizu K, Yoshida S et al. Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases. Pathol Int 2008; 58: 89–97.

Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA . Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol 2003; 120: 1026–1036.

Lundell R, Hartung L, Hill S, Perkins SL, Bahler DW . T-cell large granular lymphocyte leukemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules. Am J Clin Pathol 2005; 124: 937–946.

Geissinger E, Sadler P, Roth S, Grieb T, Puppe B, Muller N et al. Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30+ T-cell lymphoproliferations. Haematologica 2010; 95: 1697–1704.

Sokolowska-Wojdylo M, Wenzel J, Gaffal E, Steitz J, Roszkiewicz J, Bieber T et al. Absence of CD26 expression on skin-homing CLA+ CD4+ T lymphocytes in peripheral blood is a highly sensitive marker for early diagnosis and therapeutic monitoring of patients with Sezary syndrome. Clin Exp Dermatol 2005; 30: 702–706.

Kelemen K, Guitart J, Kuzel TM, Goolsby CL, Peterson LC . The usefulness of CD26 in flow cytometric analysis of peripheral blood in Sezary syndrome. Am J Clin Pathol 2008; 129: 146–156.

de Leval L, Gaulard P . CD30+ lymphoproliferative disorders. Haematologica 2010; 95: 1627–1630.

Pekarsky Y, Hallas C, Croce CM . The role of TCL1 in human T-cell leukemia. Oncogene 2001; 20: 5638–5643.

Narducci MG, Pescarmona E, Lazzeri C, Signoretti S, Lavinia AM, Remotti D et al. Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Res 2000; 60: 2095–2100.

van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

Greer JP, Mosse CA . Natural killer-cell neoplasms. Curr Hematol Malig Rep 2009; 4: 245–252.

Matsubara A, Matsumoto M, Takada K, Hato T, Hasegawa H, Tamai T et al. Acute transformation of chronic large granular lymphocyte leukemia into an aggressive form associated with preferential organ involvement. Acta Haematol 1994; 91: 206–210.

Ohno Y, Amakawa R, Fukuhara S, Huang CR, Kamesaki H, Amano H et al. Acute transformation of chronic large granular lymphocyte leukemia associated with additional chromosome abnormality. Cancer 1989; 64: 63–67.

Oshimi K . Progress in understanding and managing natural killer-cell malignancies. Br J Haematol 2007; 139: 532–544.

Lima M, Almeida J, Teixeira MA, Queiros ML, Justica B, Orfao A . The "ex vivo" patterns of CD2/CD7, CD57/CD11c, CD38/CD11b, CD45RA/CD45RO, and CD11a/HLA-DR expression identify acute/early and chronic/late NK-cell activation states. Blood Cell Mol Dis 2002; 28: 181–190.

Lim MS, de Leval L, Quintanilla-Martinez L . Commentary on the 2008 WHO classification of mature T- and NK-cell neoplasms. J Hematop 2009; 2: 65–73.

Fischer L, Hummel M, Burmeister T, Schwartz S, Thiel E . Skewed expression of natural-killer (NK)-associated antigens on lymphoproliferations of large granular lymphocytes (LGL). Hematol Oncol 2006; 24: 78–85.

Epling-Burnette PK, Painter JS, Chaurasia P, Bai F, Wei S, Djeu JY et al. Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood 2004; 103: 3431–3439.

Zambello R, Semenzato G . Natural killer receptors in patients with lymphoproliferative diseases of granular lymphocytes. Semin Hematol 2003; 40: 201–212.

Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R et al. Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood 2003; 102: 1797–1805.

Pascal V, Schleinitz N, Brunet C, Ravet S, Bonnet E, Lafarge X et al. Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. Eur J Immunol 2004; 34: 2930–2940.

Kopp P, Jaggi R, Tobler A, Borisch B, Oestreicher M, Sabacan L et al. Clonal X-inactivation analysis of human tumours using the human androgen receptor gene (HUMARA) polymorphism: a non-radioactive and semiquantitative strategy applicable to fresh and archival tissue. Mol Cell Probes 1997; 11: 217–228.

Boudewijns M, van Dongen JJ, Langerak AW . The human androgen receptor X-chromosome inactivation assay for clonality diagnostics of natural killer cell proliferations. J Mol Diagn 2007; 9: 337–344.

Gattazzo C, Teramo A, Miorin M, Scquizzato E, Cabrelle A, Balsamo M et al. Lack of expression of inhibitory KIR3DL1 receptor in patients with natural killer cell-type lymphoproliferative disease of granular lymphocytes. Haematologica 2010; 95: 1722–1729.

Orfao A, Lopez A, Flores J, Almeida J, Vidriales B, Perez J et al. Diagnosis of haematological malignancies: new applications for flow cytometry. Hematol J (Eur Hematol Assoc Educ Prog) 2006; 2: 6–13.

Borowitz MJ, Bray R, Gascoyne R, Melnick S, Parker JW, Picker L et al. U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: data analysis and interpretation. Cytometry 1997; 30: 236–244.

Bene MC, Bernier M, Castoldi G, Faure GC, Knapp W, Ludwig WD et al. Impact of immunophenotyping on management of acute leukemias. Haematologica 1999; 84: 1024–1034.

Greig B, Oldaker T, Warzynski M, Wood B 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: recommendations for training and education to perform clinical flow cytometry. Cytometry B Clin Cytom 2007; 72 Suppl 1: S23–S33.

Jaffe ES . Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Oxford, Oxford University Press: Lyon 2001; 351p.

San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, Sanchez ML et al. Immunophenotypic analysis of Waldenstrom's macroglobulinemia. Semin Oncol 2003; 30: 187–195.

Coustan-Smith E, Sandlund JT, Perkins SL, Chen H, Chang M, Abromowitch M et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children's oncology group. J Clin Oncol 2009; 27: 3533–3539.

Stark B, Avigad S, Luria D, Manor S, Reshef-Ronen T, Avrahami G et al. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer 2009; 52: 20–25.

Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW . Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol 2004; 72: 203–212.

Langerak AW, van Den Beemd R, Wolvers-Tettero IL, Boor PP, van Lochem EG, Hooijkaas H et al. Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalphabeta T-cell proliferations. Blood 2001; 98: 165–173.

van den Beemd R, Boor PP, van Lochem EG, Hop WC, Langerak AW, Wolvers-Tettero IL et al. Flow cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry 2000; 40: 336–345.

Lima M, Almeida J, Santos AH, Teixeira MA, Alguero MC, Queiros ML et al. Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes: utility in assessing clonality and insights into the pathogenesis of the disease. Am J Pathol 2001; 159: 1861–1868.

Morice WG, Kimlinger T, Katzmann JA, Lust JA, Heimgartner PJ, Halling KC et al. Flow cytometric assessment of TCR-Vbeta expression in the evaluation of peripheral blood involvement by T-cell lymphoproliferative disorders: a comparison with conventional T-cell immunophenotyping and molecular genetic techniques. Am J Clin Pathol 2004; 121: 373–383.

Feng B, Jorgensen JL, Hu Y, Medeiros LJ, Wang SA . TCR-Vbeta flow cytometric analysis of peripheral blood for assessing clonality and disease burden in patients with T cell large granular lymphocyte leukaemia. J Clin Pathol 2010; 63: 141–146.

Sandberg Y, Almeida J, Gonzalez M, Lima M, Barcena P, Szczepanski T et al. TCRgammadelta+ large granular lymphocyte leukemias reflect the spectrum of normal antigen-selected TCRgammadelta+ T-cells. Leukemia 2006; 20: 505–513.

Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores-Montero J et al. Bone marrow cells from myelodysplastic syndromes show altered immunophenotypic profiles that may contribute to the diagnosis and prognostic stratification of the disease: a pilot study on a series of 56 patients. Cytometry B Clin Cytom 2010; 78: 154–168.

Rawstron AC, Villamor N, Ritgen M, Bottcher S, Ghia P, Zehnder JL et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007; 21: 956–964.