Eukaryotic resectosomes: A single-molecule perspective
Tài liệu tham khảo
Adkins, 2013, Nucleosome dynamics regulates DNA processing, Nat. Struct. Mol. Biol., 20, 836, 10.1038/nsmb.2585
Beck, 2011, The quantitative proteome of a human cell line, Mol. Syst. Biol., 7, 549, 10.1038/msb.2011.82
Bell, 2016, Mechanics and single-molecule interrogation of DNA recombination, Annu. Rev. Biochem., 10.1146/annurev-biochem-060614-034352
Bennett, 1993, Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid, Proc. Natl. Acad. Sci., 90, 5613, 10.1073/pnas.90.12.5613
Beresten, 1999, Purification of overexpressed hexahistidine-tagged BLM N431 as oligomeric complexes, Protein Expr. Purif., 17, 239, 10.1006/prep.1999.1135
Bernstein, 2010, The RecQ DNA helicases in DNA repair, Annu. Rev. Genet., 44, 393, 10.1146/annurev-genet-102209-163602
Broderick, 2016, EXD2 promotes homologous recombination by facilitating DNA end resection, Nat. Cell Biol., 18, 271, 10.1038/ncb3303
Bugreev, 2009, Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism, J. Biol. Chem., 284, 26349, 10.1074/jbc.M109.029371
Bustamante, 2000, Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., 10, 279, 10.1016/S0959-440X(00)00085-3
Cannavo, 2014, Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks, Nature, 514, 122, 10.1038/nature13771
Cannavo, 2013, Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection, Proc. Natl. Acad. Sci. U. S. A., 110, E1661, 10.1073/pnas.1305166110
Cannon, 2013, Visualization of local DNA unwinding by Mre11/Rad50/Nbs1 using single-molecule FRET, Proc. Natl. Acad. Sci. U. S. A., 110, 18868, 10.1073/pnas.1309816110
Cassani, 2016, Tel1 and Rif2 regulate MRX functions in end-tethering and repair of DNA double-strand breaks, PLoS Biol., 14, e1002387, 10.1371/journal.pbio.1002387
Cejka, 2015, DNA end resection: nucleases team up with the right partners to initiate homologous recombination, J. Biol. Chem., 290, 22931, 10.1074/jbc.R115.675942
Cejka, 2010, DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2, Nature, 467, 112, 10.1038/nature09355
Chen, 2001, Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes, Mol. Cell, 8, 1105, 10.1016/S1097-2765(01)00388-4
Chen, 2014, Replication protein A: single-stranded DNA's first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair, BioEssays News Rev. Mol. Cell. Dev. Biol., 36, 1156, 10.1002/bies.201400107
Chung, 2010, Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting, PLoS Genet., 6, e1000948, 10.1371/journal.pgen.1000948
Costelloe, 2012, The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection, Nature, 489, 581, 10.1038/nature11353
Daley, 2014, Multifaceted role of the Topo IIIα-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection, Nucleic Acids Res., 42, 11083, 10.1093/nar/gku803
Das, 2010, Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair, J. Mol. Biol., 397, 647, 10.1016/j.jmb.2010.01.049
De Jager, 2001, Human Rad50/Mre11 is a flexible complex that can tether DNA ends, Mol. Cell, 8, 1129, 10.1016/S1097-2765(01)00381-1
Deriano, 2013, Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage, Annu. Rev. Genet., 47, 433, 10.1146/annurev-genet-110711-155540
Desai-Mehta, 2001, Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization, Mol. Cell. Biol., 21, 2184, 10.1128/MCB.21.6.2184-2191.2001
Deshpande, 2014, ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling, EMBO J., 33, 482, 10.1002/embj.201386100
Dillingham, 2008, RecBCD enzyme and the repair of double-stranded DNA breaks, Microbiol. Mol. Biol. Rev. MMBR, 72, 642, 10.1128/MMBR.00020-08
Doksani, 2014, The role of double-strand break repair pathways at functional and dysfunctional telomeres, Cold Spring Harb. Perspect. Biol., 6, a016576, 10.1101/cshperspect.a016576
Dong, 2014, The human SRCAP chromatin remodeling complex promotes DNA-end resection, Curr. Biol. CB, 24, 2097, 10.1016/j.cub.2014.07.081
Eykelenboom, 2008, SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome, Mol. Cell, 29, 644, 10.1016/j.molcel.2007.12.020
Farah, 2009, Ctp1 and Exonuclease 1, alternative nucleases regulated by the MRN complex, are required for efficient meiotic recombination, Proc. Natl. Acad. Sci. U. S. A., 106, 9356, 10.1073/pnas.0902793106
Finkelstein, 2008, Single molecule studies of homologous recombination, Mol. Biosyst., 4, 1094, 10.1039/b811681b
Gallardo, 2015, High-throughput universal DNA curtain arrays for single-molecule fluorescence imaging, Langmuir, 31, 10310, 10.1021/acs.langmuir.5b02416
Goellner, 2015, Exonuclease 1-dependent and independent mismatch repair, DNA Repair, 32, 24, 10.1016/j.dnarep.2015.04.010
Gravel, 2008, DNA helicases Sgs1 and BLM promote DNA double-strand break resection, Genes Dev., 22, 2767, 10.1101/gad.503108
Gu, 2008, Mechanisms for human genomic rearrangements, PathoGenetics, 1, 4, 10.1186/1755-8417-1-4
Herdendorf, 2014, Catalytic mechanism of bacteriophage T4 Rad50 ATP hydrolysis, Biochem. (Mosc.), 53, 5647, 10.1021/bi500558d
Hicks, 2011, Real-time analysis of double-strand DNA break repair by homologous recombination, Proc. Natl. Acad. Sci. U. S. A., 108, 3108, 10.1073/pnas.1019660108
Hopfner, 2014, ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends, BioEssays News Rev. Mol. Cell. Dev. Biol., 36, 1170, 10.1002/bies.201400102
Hopfner, 2001, Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase, Cell, 105, 473, 10.1016/S0092-8674(01)00335-X
Hopfner, 2000, Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily, Cell, 101, 789, 10.1016/S0092-8674(00)80890-9
Hua, 1997, Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast, Plasmid, 38, 91, 10.1006/plas.1997.1305
Jasin, 2013, Repair of strand breaks by homologous recombination, Cold Spring Harb. Perspect. Biol., 5, a012740, 10.1101/cshperspect.a012740
Jeon, 2016, Dynamic control of strand excision during human DNA mismatch repair, Proc. Natl. Acad. Sci., 201523748
Jiang, 2005, Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis, Mol. Cell, 20, 771, 10.1016/j.molcel.2005.10.014
Kaye, 2004, DNA breaks promote genomic instability by impeding proper chromosome segregation, Curr. Biol. CB, 14, 2096, 10.1016/j.cub.2004.10.051
Kinoshita, 2015, Human RAD50 makes a functional DNA-binding complex, Biochimie, 113, 47, 10.1016/j.biochi.2015.03.017
Kowalczykowski, 2015, An overview of the molecular mechanisms of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 7, 10.1101/cshperspect.a016410
Lafrance-Vanasse, 2015, Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair, Prog. Biophys. Mol. Biol., 117, 182, 10.1016/j.pbiomolbio.2014.12.004
Lammens, 2011, The Mre11:Rad50 structure shows an ATP dependent molecular clamp in DNA double-strand break repair, Cell, 145, 54, 10.1016/j.cell.2011.02.038
Lee, 2013, Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex, J. Biol. Chem., 288, 12840, 10.1074/jbc.M113.460378
Lengsfeld, 2007, Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex, Mol. Cell, 28, 638, 10.1016/j.molcel.2007.11.001
Levikova, 2013, Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity, Proc. Natl. Acad. Sci. U. S. A., 110, E1992, 10.1073/pnas.1300390110
Lisby, 2004, Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins, Cell, 118, 699, 10.1016/j.cell.2004.08.015
Liu, 2016, ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex, EMBO J., 35, 743, 10.15252/embj.201592462
Lobachev, 2004, Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex, Curr. Biol. CB, 14, 2107, 10.1016/j.cub.2004.11.051
Lukas, 2004, Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention, EMBO J., 23, 2674, 10.1038/sj.emboj.7600269
Makharashvili, 2014, Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection, Mol. Cell, 54, 1022, 10.1016/j.molcel.2014.04.011
Marrero, 2010, Extensive DNA end processing by exo1 and sgs1 inhibits break-induced replication, PLoS Genet., 6, e1001007, 10.1371/journal.pgen.1001007
Masuda-Sasa, 2006, Biochemical analysis of human Dna2, Nucleic Acids Res., 34, 1865, 10.1093/nar/gkl070
Mathiasen, 2014, Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 38, 172, 10.1111/1574-6976.12066
Mehta, 2014, Sources of DNA double-strand breaks and models of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 6, a016428, 10.1101/cshperspect.a016428
Mimitou, 2008, Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing, Nature, 455, 770, 10.1038/nature07312
Möckel, 2012, ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex, Nucleic Acids Res., 40, 914, 10.1093/nar/gkr749
Modrich, 2006, Mechanisms in eukaryotic mismatch repair, J. Biol. Chem., 281, 30305, 10.1074/jbc.R600022200
Moreno-Herrero, 2005, Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA, Nature, 437, 440, 10.1038/nature03927
Myler, 2016, Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins, Proc. Natl. Acad. Sci., 113, e1170, 10.1073/pnas.1516674113
Nguyen, 2014, Diffusion of human replication protein A along single-stranded DNA, J. Mol. Biol., 426, 3246, 10.1016/j.jmb.2014.07.014
Nicolette, 2010, Mre11-Rad50-Xrs2 and Sae2 promote 5’ strand resection of DNA double-strand breaks, Nat. Struct. Mol. Biol., 17, 1478, 10.1038/nsmb.1957
Nimonkar, 2011, BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair, Genes Dev., 25, 350, 10.1101/gad.2003811
Nimonkar, 2008, Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair, Proc. Natl. Acad. Sci. U. S. A., 105, 16906, 10.1073/pnas.0809380105
Niu, 2010, Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae, Nature, 467, 108, 10.1038/nature09318
Orans, 2011, Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family, Cell, 145, 212, 10.1016/j.cell.2011.03.005
Paull, 2014, The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes, Exp. Cell Res., 329, 139, 10.1016/j.yexcr.2014.07.007
Paull, 1999, Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex, Genes Dev., 13, 1276, 10.1101/gad.13.10.1276
Paull, 1998, The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks, Mol. Cell, 1, 969, 10.1016/S1097-2765(00)80097-0
Reardon, 2005, Nucleotide excision repair, Prog. Nucleic Acid. Res. Mol. Biol., 79, 183, 10.1016/S0079-6603(04)79004-2
Richard, 2008, Single-stranded DNA-binding protein hSSB1 is critical for genomic stability, Nature, 453, 677, 10.1038/nature06883
Robinson, 2013, Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies, Nat. Rev. Microbiol., 11, 303, 10.1038/nrmicro2994
Roy, 2009, SSB protein diffusion on single-stranded DNA stimulates RecA filament formation, Nature, 461, 1092, 10.1038/nature08442
Rubnitz, 1984, The minimum amount of homology required for homologous recombination in mammalian cells, Mol. Cell. Biol., 4, 2253, 10.1128/MCB.4.11.2253
Santos-Pereira, 2015, R loops: new modulators of genome dynamics and function, Nat. Rev. Genet., 16, 583, 10.1038/nrg3961
Seifert, 2016, Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50, EMBO J., 35, 759, 10.15252/embj.201592934
Shibata, 2014, DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities, Mol. Cell, 53, 7, 10.1016/j.molcel.2013.11.003
Skourti-Stathaki, 2014, A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, Genes Dev., 28, 1384, 10.1101/gad.242990.114
Soutoglou, 2008, Activation of the cellular DNA damage response in the absence of DNA lesions, Science, 320, 1507, 10.1126/science.1159051
Spies, 2013, There and back again: new single-molecule insights in the motion of DNA repair proteins, Curr. Opin. Struct. Biol., 23, 154, 10.1016/j.sbi.2012.11.008
Stracker, 2011, The MRE11 complex: starting from the ends, Nat. Rev. Mol. Cell Biol., 12, 90, 10.1038/nrm3047
Sugawara, 2000, DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair, Mol. Cell. Biol., 20, 5300, 10.1128/MCB.20.14.5300-5309.2000
Symington, 2016, Mechanism and regulation of DNA end resection in eukaryotes, Crit. Rev. Biochem. Mol. Biol., 51, 195, 10.3109/10409238.2016.1172552
Symington, 2011, Double-strand break end resection and repair pathway choice, Annu. Rev. Genet., 45, 247, 10.1146/annurev-genet-110410-132435
Tauchi, 2002, Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells, Nature, 420, 93, 10.1038/nature01125
Tkáč, 2016, HELB is a feedback inhibitor of DNA end resection, Mol. Cell, 61, 405, 10.1016/j.molcel.2015.12.013
Tomimatsu, 2012, Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions, DNA Repair, 11, 441, 10.1016/j.dnarep.2012.01.006
Trakselis, 2001, Dynamic protein interactions in the bacteriophage T4 replisome, Trends Biochem. Sci., 26, 566, 10.1016/S0968-0004(01)01929-6
Tsutakawa, 2011, Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily, Cell, 145, 198, 10.1016/j.cell.2011.03.004
Van der Linden, 2009, RAD50 and NBS1 form a stable complex functional in DNA binding and tethering, Nucleic Acids Res., 37, 1580, 10.1093/nar/gkn1072
Van Noort, 2003, The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility, Proc. Natl. Acad. Sci. U. S. A., 100, 7581, 10.1073/pnas.1330706100
Vilenchik, 2006, Radiation dose-rate effects, endogenous DNA damage, and signaling resonance, Proc. Natl. Acad. Sci. U. S. A., 103, 17874, 10.1073/pnas.0607995103
Vilenchik, 2003, Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer, Proc. Natl. Acad. Sci. U. S. A., 100, 12871, 10.1073/pnas.2135498100
Wang, 2014, CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity, Mol. Cell, 54, 1012, 10.1016/j.molcel.2014.04.012
Wang, 2015, Unwinding forward and sliding back: an intermittent unwinding mode of the BLM helicase, Nucleic Acids Res., 43, 3736, 10.1093/nar/gkv209
Warnasooriya, 2014, Single-molecule fluorescence-based studies on the dynamics, assembly and catalytic mechanism of the spliceosome, Biochem. Soc. Trans., 42, 1211, 10.1042/BST20140105
Weterings, 2008, The endless tale of non-homologous end-joining, Cell Res., 18, 114, 10.1038/cr.2008.3
Williams, 2010, Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks, DNA Repair, 9, 1299, 10.1016/j.dnarep.2010.10.001
Williams, 2011, ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair, Nat. Struct. Mol. Biol., 18, 423, 10.1038/nsmb.2038
Williams, 2009, Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair, Cell, 139, 87, 10.1016/j.cell.2009.07.033
Yang, 2013, The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1, EMBO J., 32, 126, 10.1038/emboj.2012.314
Yeeles, 2010, The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes, DNA Repair, 9, 276, 10.1016/j.dnarep.2009.12.016
Yodh, 2009, BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation, EMBO J., 28, 405, 10.1038/emboj.2008.298
Zeman, 2014, Causes and consequences of replication stress, Nat. Cell Biol., 16, 2, 10.1038/ncb2897
Zhou, 2000, The DNA damage response: putting checkpoints in perspective, Nature, 408, 433, 10.1038/35044005
Zhou, 2014, Quantitation of DNA double-strand break resection intermediates in human cells, Nucleic Acids Res., 42, e19, 10.1093/nar/gkt1309
Zhu, 2008, Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends, Cell, 134, 981, 10.1016/j.cell.2008.08.037