Eukaryotic resectosomes: A single-molecule perspective

Progress in Biophysics and Molecular Biology - Tập 127 - Trang 119-129 - 2017
Logan R. Myler1,2, Ilya J. Finkelstein1,2
1Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
2Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA

Tài liệu tham khảo

Adkins, 2013, Nucleosome dynamics regulates DNA processing, Nat. Struct. Mol. Biol., 20, 836, 10.1038/nsmb.2585 Beck, 2011, The quantitative proteome of a human cell line, Mol. Syst. Biol., 7, 549, 10.1038/msb.2011.82 Bell, 2016, Mechanics and single-molecule interrogation of DNA recombination, Annu. Rev. Biochem., 10.1146/annurev-biochem-060614-034352 Bennett, 1993, Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid, Proc. Natl. Acad. Sci., 90, 5613, 10.1073/pnas.90.12.5613 Beresten, 1999, Purification of overexpressed hexahistidine-tagged BLM N431 as oligomeric complexes, Protein Expr. Purif., 17, 239, 10.1006/prep.1999.1135 Bernstein, 2010, The RecQ DNA helicases in DNA repair, Annu. Rev. Genet., 44, 393, 10.1146/annurev-genet-102209-163602 Broderick, 2016, EXD2 promotes homologous recombination by facilitating DNA end resection, Nat. Cell Biol., 18, 271, 10.1038/ncb3303 Bugreev, 2009, Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism, J. Biol. Chem., 284, 26349, 10.1074/jbc.M109.029371 Bustamante, 2000, Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., 10, 279, 10.1016/S0959-440X(00)00085-3 Cannavo, 2014, Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks, Nature, 514, 122, 10.1038/nature13771 Cannavo, 2013, Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection, Proc. Natl. Acad. Sci. U. S. A., 110, E1661, 10.1073/pnas.1305166110 Cannon, 2013, Visualization of local DNA unwinding by Mre11/Rad50/Nbs1 using single-molecule FRET, Proc. Natl. Acad. Sci. U. S. A., 110, 18868, 10.1073/pnas.1309816110 Cassani, 2016, Tel1 and Rif2 regulate MRX functions in end-tethering and repair of DNA double-strand breaks, PLoS Biol., 14, e1002387, 10.1371/journal.pbio.1002387 Cejka, 2015, DNA end resection: nucleases team up with the right partners to initiate homologous recombination, J. Biol. Chem., 290, 22931, 10.1074/jbc.R115.675942 Cejka, 2010, DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2, Nature, 467, 112, 10.1038/nature09355 Chen, 2001, Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes, Mol. Cell, 8, 1105, 10.1016/S1097-2765(01)00388-4 Chen, 2014, Replication protein A: single-stranded DNA's first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair, BioEssays News Rev. Mol. Cell. Dev. Biol., 36, 1156, 10.1002/bies.201400107 Chung, 2010, Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting, PLoS Genet., 6, e1000948, 10.1371/journal.pgen.1000948 Costelloe, 2012, The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection, Nature, 489, 581, 10.1038/nature11353 Daley, 2014, Multifaceted role of the Topo IIIα-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection, Nucleic Acids Res., 42, 11083, 10.1093/nar/gku803 Das, 2010, Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair, J. Mol. Biol., 397, 647, 10.1016/j.jmb.2010.01.049 De Jager, 2001, Human Rad50/Mre11 is a flexible complex that can tether DNA ends, Mol. Cell, 8, 1129, 10.1016/S1097-2765(01)00381-1 Deriano, 2013, Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage, Annu. Rev. Genet., 47, 433, 10.1146/annurev-genet-110711-155540 Desai-Mehta, 2001, Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization, Mol. Cell. Biol., 21, 2184, 10.1128/MCB.21.6.2184-2191.2001 Deshpande, 2014, ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling, EMBO J., 33, 482, 10.1002/embj.201386100 Dillingham, 2008, RecBCD enzyme and the repair of double-stranded DNA breaks, Microbiol. Mol. Biol. Rev. MMBR, 72, 642, 10.1128/MMBR.00020-08 Doksani, 2014, The role of double-strand break repair pathways at functional and dysfunctional telomeres, Cold Spring Harb. Perspect. Biol., 6, a016576, 10.1101/cshperspect.a016576 Dong, 2014, The human SRCAP chromatin remodeling complex promotes DNA-end resection, Curr. Biol. CB, 24, 2097, 10.1016/j.cub.2014.07.081 Eykelenboom, 2008, SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome, Mol. Cell, 29, 644, 10.1016/j.molcel.2007.12.020 Farah, 2009, Ctp1 and Exonuclease 1, alternative nucleases regulated by the MRN complex, are required for efficient meiotic recombination, Proc. Natl. Acad. Sci. U. S. A., 106, 9356, 10.1073/pnas.0902793106 Finkelstein, 2008, Single molecule studies of homologous recombination, Mol. Biosyst., 4, 1094, 10.1039/b811681b Gallardo, 2015, High-throughput universal DNA curtain arrays for single-molecule fluorescence imaging, Langmuir, 31, 10310, 10.1021/acs.langmuir.5b02416 Goellner, 2015, Exonuclease 1-dependent and independent mismatch repair, DNA Repair, 32, 24, 10.1016/j.dnarep.2015.04.010 Gravel, 2008, DNA helicases Sgs1 and BLM promote DNA double-strand break resection, Genes Dev., 22, 2767, 10.1101/gad.503108 Gu, 2008, Mechanisms for human genomic rearrangements, PathoGenetics, 1, 4, 10.1186/1755-8417-1-4 Herdendorf, 2014, Catalytic mechanism of bacteriophage T4 Rad50 ATP hydrolysis, Biochem. (Mosc.), 53, 5647, 10.1021/bi500558d Hicks, 2011, Real-time analysis of double-strand DNA break repair by homologous recombination, Proc. Natl. Acad. Sci. U. S. A., 108, 3108, 10.1073/pnas.1019660108 Hopfner, 2014, ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends, BioEssays News Rev. Mol. Cell. Dev. Biol., 36, 1170, 10.1002/bies.201400102 Hopfner, 2001, Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase, Cell, 105, 473, 10.1016/S0092-8674(01)00335-X Hopfner, 2000, Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily, Cell, 101, 789, 10.1016/S0092-8674(00)80890-9 Hua, 1997, Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast, Plasmid, 38, 91, 10.1006/plas.1997.1305 Jasin, 2013, Repair of strand breaks by homologous recombination, Cold Spring Harb. Perspect. Biol., 5, a012740, 10.1101/cshperspect.a012740 Jeon, 2016, Dynamic control of strand excision during human DNA mismatch repair, Proc. Natl. Acad. Sci., 201523748 Jiang, 2005, Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis, Mol. Cell, 20, 771, 10.1016/j.molcel.2005.10.014 Kaye, 2004, DNA breaks promote genomic instability by impeding proper chromosome segregation, Curr. Biol. CB, 14, 2096, 10.1016/j.cub.2004.10.051 Kinoshita, 2015, Human RAD50 makes a functional DNA-binding complex, Biochimie, 113, 47, 10.1016/j.biochi.2015.03.017 Kowalczykowski, 2015, An overview of the molecular mechanisms of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 7, 10.1101/cshperspect.a016410 Lafrance-Vanasse, 2015, Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair, Prog. Biophys. Mol. Biol., 117, 182, 10.1016/j.pbiomolbio.2014.12.004 Lammens, 2011, The Mre11:Rad50 structure shows an ATP dependent molecular clamp in DNA double-strand break repair, Cell, 145, 54, 10.1016/j.cell.2011.02.038 Lee, 2013, Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex, J. Biol. Chem., 288, 12840, 10.1074/jbc.M113.460378 Lengsfeld, 2007, Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex, Mol. Cell, 28, 638, 10.1016/j.molcel.2007.11.001 Levikova, 2013, Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity, Proc. Natl. Acad. Sci. U. S. A., 110, E1992, 10.1073/pnas.1300390110 Lisby, 2004, Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins, Cell, 118, 699, 10.1016/j.cell.2004.08.015 Liu, 2016, ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex, EMBO J., 35, 743, 10.15252/embj.201592462 Lobachev, 2004, Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex, Curr. Biol. CB, 14, 2107, 10.1016/j.cub.2004.11.051 Lukas, 2004, Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention, EMBO J., 23, 2674, 10.1038/sj.emboj.7600269 Makharashvili, 2014, Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection, Mol. Cell, 54, 1022, 10.1016/j.molcel.2014.04.011 Marrero, 2010, Extensive DNA end processing by exo1 and sgs1 inhibits break-induced replication, PLoS Genet., 6, e1001007, 10.1371/journal.pgen.1001007 Masuda-Sasa, 2006, Biochemical analysis of human Dna2, Nucleic Acids Res., 34, 1865, 10.1093/nar/gkl070 Mathiasen, 2014, Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 38, 172, 10.1111/1574-6976.12066 Mehta, 2014, Sources of DNA double-strand breaks and models of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 6, a016428, 10.1101/cshperspect.a016428 Mimitou, 2008, Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing, Nature, 455, 770, 10.1038/nature07312 Möckel, 2012, ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex, Nucleic Acids Res., 40, 914, 10.1093/nar/gkr749 Modrich, 2006, Mechanisms in eukaryotic mismatch repair, J. Biol. Chem., 281, 30305, 10.1074/jbc.R600022200 Moreno-Herrero, 2005, Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA, Nature, 437, 440, 10.1038/nature03927 Myler, 2016, Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins, Proc. Natl. Acad. Sci., 113, e1170, 10.1073/pnas.1516674113 Nguyen, 2014, Diffusion of human replication protein A along single-stranded DNA, J. Mol. Biol., 426, 3246, 10.1016/j.jmb.2014.07.014 Nicolette, 2010, Mre11-Rad50-Xrs2 and Sae2 promote 5’ strand resection of DNA double-strand breaks, Nat. Struct. Mol. Biol., 17, 1478, 10.1038/nsmb.1957 Nimonkar, 2011, BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair, Genes Dev., 25, 350, 10.1101/gad.2003811 Nimonkar, 2008, Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair, Proc. Natl. Acad. Sci. U. S. A., 105, 16906, 10.1073/pnas.0809380105 Niu, 2010, Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae, Nature, 467, 108, 10.1038/nature09318 Orans, 2011, Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family, Cell, 145, 212, 10.1016/j.cell.2011.03.005 Paull, 2014, The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes, Exp. Cell Res., 329, 139, 10.1016/j.yexcr.2014.07.007 Paull, 1999, Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex, Genes Dev., 13, 1276, 10.1101/gad.13.10.1276 Paull, 1998, The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks, Mol. Cell, 1, 969, 10.1016/S1097-2765(00)80097-0 Reardon, 2005, Nucleotide excision repair, Prog. Nucleic Acid. Res. Mol. Biol., 79, 183, 10.1016/S0079-6603(04)79004-2 Richard, 2008, Single-stranded DNA-binding protein hSSB1 is critical for genomic stability, Nature, 453, 677, 10.1038/nature06883 Robinson, 2013, Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies, Nat. Rev. Microbiol., 11, 303, 10.1038/nrmicro2994 Roy, 2009, SSB protein diffusion on single-stranded DNA stimulates RecA filament formation, Nature, 461, 1092, 10.1038/nature08442 Rubnitz, 1984, The minimum amount of homology required for homologous recombination in mammalian cells, Mol. Cell. Biol., 4, 2253, 10.1128/MCB.4.11.2253 Santos-Pereira, 2015, R loops: new modulators of genome dynamics and function, Nat. Rev. Genet., 16, 583, 10.1038/nrg3961 Seifert, 2016, Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50, EMBO J., 35, 759, 10.15252/embj.201592934 Shibata, 2014, DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities, Mol. Cell, 53, 7, 10.1016/j.molcel.2013.11.003 Skourti-Stathaki, 2014, A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, Genes Dev., 28, 1384, 10.1101/gad.242990.114 Soutoglou, 2008, Activation of the cellular DNA damage response in the absence of DNA lesions, Science, 320, 1507, 10.1126/science.1159051 Spies, 2013, There and back again: new single-molecule insights in the motion of DNA repair proteins, Curr. Opin. Struct. Biol., 23, 154, 10.1016/j.sbi.2012.11.008 Stracker, 2011, The MRE11 complex: starting from the ends, Nat. Rev. Mol. Cell Biol., 12, 90, 10.1038/nrm3047 Sugawara, 2000, DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair, Mol. Cell. Biol., 20, 5300, 10.1128/MCB.20.14.5300-5309.2000 Symington, 2016, Mechanism and regulation of DNA end resection in eukaryotes, Crit. Rev. Biochem. Mol. Biol., 51, 195, 10.3109/10409238.2016.1172552 Symington, 2011, Double-strand break end resection and repair pathway choice, Annu. Rev. Genet., 45, 247, 10.1146/annurev-genet-110410-132435 Tauchi, 2002, Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells, Nature, 420, 93, 10.1038/nature01125 Tkáč, 2016, HELB is a feedback inhibitor of DNA end resection, Mol. Cell, 61, 405, 10.1016/j.molcel.2015.12.013 Tomimatsu, 2012, Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions, DNA Repair, 11, 441, 10.1016/j.dnarep.2012.01.006 Trakselis, 2001, Dynamic protein interactions in the bacteriophage T4 replisome, Trends Biochem. Sci., 26, 566, 10.1016/S0968-0004(01)01929-6 Tsutakawa, 2011, Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily, Cell, 145, 198, 10.1016/j.cell.2011.03.004 Van der Linden, 2009, RAD50 and NBS1 form a stable complex functional in DNA binding and tethering, Nucleic Acids Res., 37, 1580, 10.1093/nar/gkn1072 Van Noort, 2003, The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility, Proc. Natl. Acad. Sci. U. S. A., 100, 7581, 10.1073/pnas.1330706100 Vilenchik, 2006, Radiation dose-rate effects, endogenous DNA damage, and signaling resonance, Proc. Natl. Acad. Sci. U. S. A., 103, 17874, 10.1073/pnas.0607995103 Vilenchik, 2003, Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer, Proc. Natl. Acad. Sci. U. S. A., 100, 12871, 10.1073/pnas.2135498100 Wang, 2014, CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity, Mol. Cell, 54, 1012, 10.1016/j.molcel.2014.04.012 Wang, 2015, Unwinding forward and sliding back: an intermittent unwinding mode of the BLM helicase, Nucleic Acids Res., 43, 3736, 10.1093/nar/gkv209 Warnasooriya, 2014, Single-molecule fluorescence-based studies on the dynamics, assembly and catalytic mechanism of the spliceosome, Biochem. Soc. Trans., 42, 1211, 10.1042/BST20140105 Weterings, 2008, The endless tale of non-homologous end-joining, Cell Res., 18, 114, 10.1038/cr.2008.3 Williams, 2010, Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks, DNA Repair, 9, 1299, 10.1016/j.dnarep.2010.10.001 Williams, 2011, ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair, Nat. Struct. Mol. Biol., 18, 423, 10.1038/nsmb.2038 Williams, 2009, Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair, Cell, 139, 87, 10.1016/j.cell.2009.07.033 Yang, 2013, The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1, EMBO J., 32, 126, 10.1038/emboj.2012.314 Yeeles, 2010, The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes, DNA Repair, 9, 276, 10.1016/j.dnarep.2009.12.016 Yodh, 2009, BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation, EMBO J., 28, 405, 10.1038/emboj.2008.298 Zeman, 2014, Causes and consequences of replication stress, Nat. Cell Biol., 16, 2, 10.1038/ncb2897 Zhou, 2000, The DNA damage response: putting checkpoints in perspective, Nature, 408, 433, 10.1038/35044005 Zhou, 2014, Quantitation of DNA double-strand break resection intermediates in human cells, Nucleic Acids Res., 42, e19, 10.1093/nar/gkt1309 Zhu, 2008, Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends, Cell, 134, 981, 10.1016/j.cell.2008.08.037