Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life?

Trends in Microbiology - Tập 30 - Trang 421-431 - 2022
Stephanie-Jane Nobs1,2, Fraser I. MacLeod1,2, Hon Lun Wong1,2,3, Brendan P. Burns1,2
1School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
2Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
3Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic

Tài liệu tham khảo

Sagan, 1967, On the origin of mitosing cells, J. Theor. Biol., 14, 255, 10.1016/0022-5193(67)90079-3 Martijn, 2018, Deep mitochondrial origin outside the sampled alphaproteobacteria, Nature, 557, 101, 10.1038/s41586-018-0059-5 Wang, 2015, An integrated phylogenomic approach toward pinpointing the origin of mitochondria, Sci. Rep., 5, 7949, 10.1038/srep07949 Woese, 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. U. S. A., 74, 5088, 10.1073/pnas.74.11.5088 Lake, 1984, Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes, Proc. Natl. Acad. Sci. U. S. A., 81, 3786, 10.1073/pnas.81.12.3786 Hartman, 2002, The origin of the eukaryotic cell: A genomic investigation, Proc. Natl. Acad. Sci. U. S. A., 99, 1420, 10.1073/pnas.032658599 Yutin, 2012, Archaeal origin of tubulin, Biol. Direct, 7, 10, 10.1186/1745-6150-7-10 Ettema, 2011, An actin-based cytoskeleton in archaea, Mol. Microbiol., 80, 1052, 10.1111/j.1365-2958.2011.07635.x Samson, 2008, A role for the ESCRT system in cell division in Archaea, Science, 322, 1710, 10.1126/science.1165322 Imachi, 2020, Isolation of an archaeon at the prokaryote–eukaryote interface, Nature, 577, 519, 10.1038/s41586-019-1916-6 Zaremba-Niedzwiedzka, 2017, Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, 541, 353, 10.1038/nature21031 Klinger, 2016, Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks, Mol. Biol. Evol., 33, 1528, 10.1093/molbev/msw034 Spang, 2015, Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, 521, 173, 10.1038/nature14447 Hug, 2016, A new view of the tree of life, Nat. Microbiol., 1, 16048, 10.1038/nmicrobiol.2016.48 Eme, 2017, Archaea and the origin of eukaryotes, Nat. Rev. Microbiol., 15, 711, 10.1038/nrmicro.2017.133 Makarova, 2005, Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell, Nucleic Acids Res., 33, 4626, 10.1093/nar/gki775 Pittis, 2016, Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry, Nature, 531, 101, 10.1038/nature16941 Ku, 2015, Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes, Proc. Natl. Acad. Sci. U. S. A., 112, 10139, 10.1073/pnas.1421385112 Thiergart, 2012, An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin, Genome Biol. Evol., 4, 466, 10.1093/gbe/evs018 Gray, 1999, Mitochondrial evolution, Science, 283, 1476, 10.1126/science.283.5407.1476 Gabaldón, 2018, Relative timing of mitochondrial endosymbiosis and the ‘pre-mitochondrial symbioses’ hypothesis, IUBMB Life, 70, 1188, 10.1002/iub.1950 Timmis, 2004, Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes, Nat. Rev. Genet., 5, 123, 10.1038/nrg1271 Vosseberg, 2021, Timing the origin of eukaryotic cellular complexity with ancient duplications, Nat. Ecol. Evol., 5, 92, 10.1038/s41559-020-01320-z Koonin, 2010, The origin and early evolution of eukaryotes in the light of phylogenomics, Genome Biol., 11, 209, 10.1186/gb-2010-11-5-209 Pisani, 2007, Supertrees disentangle the chimerical origin of eukaryotic genomes, Mol. Biol. Evol., 24, 1752, 10.1093/molbev/msm095 Esser, 2004, A Genome Phylogeny for Mitochondria Among α-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes, Mol. Biol. Evol., 21, 1643, 10.1093/molbev/msh160 Gabaldón, 2007, From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism, PLoS Comput. Biol., 3, 10.1371/journal.pcbi.0030219 Gabaldón, 2004, Shaping the mitochondrial proteome, Biochim. Biophys. Acta (Bioenergetics), 1659, 212, 10.1016/j.bbabio.2004.07.011 Roger, 2017, The origin and diversification of mitochondria, Curr. Biol., 27, R1177, 10.1016/j.cub.2017.09.015 Hofstatter, 2021, Complex evolution of the mismatch repair system in eukaryotes is illuminated by novel archaeal genomes, J. Mol. Evol., 89, 12, 10.1007/s00239-020-09979-5 Wong, 2020, Microbial dark matter filling the niche in hypersaline microbial mats, Microbiome, 8, 135, 10.1186/s40168-020-00910-0 Bulzu, 2019, Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche, Nat. Microbiol., 4, 1129, 10.1038/s41564-019-0404-y Fournier, 2018, A briefly argued case that Asgard Archaea are part of the eukaryote tree, Front. Microbiol., 9, 1896, 10.3389/fmicb.2018.01896 Dacks, 2007, Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode, J. Cell Sci., 120, 2977, 10.1242/jcs.013250 Sacher, 2008, The TRAPP complex: insights into its architecture and function, Traffic, 9, 2032, 10.1111/j.1600-0854.2008.00833.x Podar, 2008, The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system, Biol. Direct, 3, 2, 10.1186/1745-6150-3-2 Barlowe, 1994, COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum, Cell, 77, 895, 10.1016/0092-8674(94)90138-4 Jahn, 2012, Molecular machines governing exocytosis of synaptic vesicles, Nature, 490, 201, 10.1038/nature11320 Neveu, 2020, Prototypic SNARE proteins are encoded in the genomes of Heimdallarchaeota, potentially bridging the gap between the prokaryotes and eukaryotes, Curr. Biol., 30, 2468, 10.1016/j.cub.2020.04.060 Olmos, 2016, The ESCRT machinery: new roles at new holes, Curr. Opin. Cell Biol., 38, 1, 10.1016/j.ceb.2015.12.001 McCullough, 2018, Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes, Annu. Rev. Cell Biol., 34, 85, 10.1146/annurev-cellbio-100616-060600 Leung, 2008, Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage, Traffic, 9, 1698, 10.1111/j.1600-0854.2008.00797.x Hurley, 2010, The ESCRT complexes, Crit. Rev. Biochem. Mol. Biol., 45, 463, 10.3109/10409238.2010.502516 Raiborg, 2009, The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins, Nature, 458, 445, 10.1038/nature07961 Lu, 2020, Coevolution of eukaryote-like Vps4 and ESCRT-III subunits in the Asgard Archaea, mBio, 11, e00417, 10.1128/mBio.00417-20 Gunning, 2015, The evolution of compositionally and functionally distinct actin filaments, J. Cell Sci., 128, 2009, 10.1242/jcs.165563 Downing, 1998, Tubulin and microtubule structure, Curr. Opin. Cell Biol., 10, 16, 10.1016/S0955-0674(98)80082-3 Akıl, 2018, Genomes of Asgard archaea encode profilins that regulate actin, Nature, 562, 439, 10.1038/s41586-018-0548-6 Akıl, 2020, Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea, Proc. Natl. Acad. Sci. U. S. A., 117, 19904, 10.1073/pnas.2009167117 Akıl, 2021, Mythical origins of the actin cytoskeleton, Curr. Opin. Cell Biol., 68, 55, 10.1016/j.ceb.2020.08.011 Stairs, 2020, The archaeal roots of the eukaryotic dynamic actin cytoskeleton, Curr. Biol., 30, R521, 10.1016/j.cub.2020.02.074 Liao, 2021, Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction, Nat. Microbiol., 6, 594, 10.1038/s41564-021-00894-z Liao, 2018, Archaeal cell biology: diverse functions of tubulin-like cytoskeletal proteins at the cell envelope, Emerg. Top. Life Sci., 2, 547, 10.1042/ETLS20180026 Duggin, 2015, CetZ tubulin-like proteins control archaeal cell shape, Nature, 519, 362, 10.1038/nature13983 Brueckner, 2020, Bacterial genes outnumber archaeal genes in eukaryotic genomes, Genome Biol. Evol., 12, 282, 10.1093/gbe/evaa047 Fournier, 2015, Ancient horizontal gene transfer and the last common ancestors, BMC Evol. Biol., 15, 70, 10.1186/s12862-015-0350-0 Nelson-Sathi, 2015, Origins of major archaeal clades correspond to gene acquisitions from bacteria, Nature, 517, 77, 10.1038/nature13805 Méheust, 2018, Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution, Genome Biol., 19, 75, 10.1186/s13059-018-1454-9 Rivera, 1998, Genomic evidence for two functionally distinct gene classes, Proc. Natl. Acad. Sci. U. S. A., 95, 6239, 10.1073/pnas.95.11.6239 Mans, 2004, Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex, Cell Cycle, 3, 1625, 10.4161/cc.3.12.1316 DeGrasse, 2009, Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor*, Mol. Cell Proteom., 8, 2119, 10.1074/mcp.M900038-MCP200 Yutin, 2009, The origins of phagocytosis and eukaryogenesis, Biol. Direct, 4, 9, 10.1186/1745-6150-4-9 Weller, 2002, Identification of a DNA nonhomologous end-joining complex in bacteria, Science, 297, 1686, 10.1126/science.1074584 Koumandou, 2013, Molecular paleontology and complexity in the last eukaryotic common ancestor, Crit. Rev. Biochem. Mol. Biol., 48, 373, 10.3109/10409238.2013.821444 Lane, 2010, The energetics of genome complexity, Nature, 467, 929, 10.1038/nature09486 Lane, 2014, Bioenergetic constraints on the evolution of complex life, Cold Spring Harb. Perspect. Biol., 6, 10.1101/cshperspect.a015982 Spang, 2019, Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism, Nat. Microbiol., 4, 1138, 10.1038/s41564-019-0406-9 López-García, 2020, The Syntrophy hypothesis for the origin of eukaryotes revisited, Nat. Microbiol., 5, 655, 10.1038/s41564-020-0710-4 López-García, 2020, Cultured Asgard archaea shed light on eukaryogenesis, Cell, 181, 232, 10.1016/j.cell.2020.03.058 Jeong, 2019, Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation, Sci. Rep., 9, 5953, 10.1038/s41598-019-42227-5 Caro-Quintero, 2015, Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria, ISME J., 9, 958, 10.1038/ismej.2014.193 Hug, 2018, It takes a village: microbial communities thrive through interactions and metabolic handoffs, mSystems, 3, 10.1128/mSystems.00152-17 Beraldi-Campesi, 2013, Early life on land and the first terrestrial ecosystems, Ecol. Process., 2, 1, 10.1186/2192-1709-2-1 Javaux, 2018, The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth’s middle-age, Earth Sci. Rev., 176, 68, 10.1016/j.earscirev.2017.10.001 Betts, 2018, Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin, Nat. Ecol. Evol., 2, 1556, 10.1038/s41559-018-0644-x Jain, 2003, Horizontal gene transfer accelerates genome innovation and evolution, Mol. Biol. Evol., 20, 1598, 10.1093/molbev/msg154 David, 2011, Rapid evolutionary innovation during an Archaean genetic expansion, Nature, 469, 93, 10.1038/nature09649 Fuchsman, 2017, Effect of the environment on horizontal gene transfer between bacteria and archaea, PeerJ, 5, 10.7717/peerj.3865 Jahnert, 2012, Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia, Mar. Geol., 303–306, 115, 10.1016/j.margeo.2012.02.009 Wong, 2018, Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes, ISME J., 12, 2619, 10.1038/s41396-018-0208-8 MacLeod, 2019, Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes, AIMS Microbiol., 5, 48, 10.3934/microbiol.2019.1.48