Các phép hiện thực có thể điều khiển Euclid của các hệ thống di truyền tuyến tính

Theory of Computing Systems - Tập 12 - Trang 133-149 - 1978
E. M. Cliff1,2, J. A. Burns1,2
1Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, USA
2Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, USA

Tóm tắt

Một bài toán hiện thực cho một lớp các hệ thống di truyền tuyến tính được hình thành và các biểu diễn “không gian trạng thái” được xây dựng từ các quan hệ đầu vào-đầu ra. Các mô hình di truyền thu được được chỉ ra là có thể điều khiển theo Euclid, và những so sánh được thực hiện giữa các phép hiện thực di truyền này và các lý thuyết gần đây được phát triển khác.

Từ khóa

#hệ thống di truyền tuyến tính #hiện thực #điều khiển Euclid #không gian trạng thái #quan hệ đầu vào-đầu ra

Tài liệu tham khảo

H. T. Banks, and J. A. Burns, Hereditary control problems: numerical methods based on averaging approximations,SIAM J. Control and Optimization, 16, 169–208, 1978. H. T. Banks, and J. A. Burns, An abstract framework for approximate solutions to optimal control problems governed by hereditary systems, in Proceedings,International Conference on Differential Equations, (Univ. So. Calif., Sept., 1974), H. A. Antosiewicz, ed., Academic Press, New York, 10–25, 1975. H. T. Banks and J. A. Burns, Eigenmanifold decomposition for retarded functional differential equations in Hilbert space,V.P.I. & S.U. Math. Dept. Tech. Rep. TR-1, Blacksburg, VA., November, 1974. H. T. Banks, J. A. Burns, E. M. Cliff, and P. R. Thrift, Numerical solutions of hereditary control problems via an approximation technique,Brown University LCDS Tech. Rep. 75–6, Providence, R.I., October, 1975. J. A. Burns and E. M. Cliff, On the formulation of some distributed system parameter identification problems,Proceedings AIAA Symposium on Dynamics and Control of Large Flexible Spacecraft, 87–105, 1977. J. A. Burns and E. M. Cliff, Methods for approximating solutions to linear hereditary quadratic optimal control problems,IEEE Transactions on Automatic Control, 23, 21–36, 1978. E. M. Cliff and J. A. Burns, On approximating linear hereditary dynamics by systems of ordinary differential equations,Numerical Methods for Differential Equations and Simulation, A. W. Bennett and R. Vichnevetsky, eds., North-Holland, New York, 67–72, 1978. E. M. Cliff and J. A. Burns, Parameter identification for linear hereditary systems via an approximation technique,Proc. Conf. on The Information Linkage Between Applied Mathematics and Industry, U.S.N. Postgraduate School, Monterey, Ca., February, 1978, to appear. M. C. Delfour, The linear quadratic optimal control problem for hereditary differential systems: theory and numerical solution,Applied Mathematics and Optimization, 3, 101–162, 1977. M. C. Delfour and S. K. Mitter, Controllability, observability, and optimal feedback control of hereditary differential systems,SIAM J. Control, 10, 298–328, 1972. P. A. Fuhrmann, Exact controllability and observability and realization theory in Hilbert space,J. Math. Anal. Appl., 53, 377–392, 1976. J. W. Helton, Systems with infinite dimensional state space: the Hilbert space approach,Proc. IEEE., 64, 145–160, 1976. E. W. Kamen, Module structure of infinite-dimensional systems with applications to controllability,SIAM J. Control and Optimization, 4, 389–408, 1976. E. W. Kamen, On an algebraic theory of systems defined by convolution operators,Math. Systems Th., 9, 57–74, 1975. E. W. Kamen, Representation and realization of operational differential equations with time-varying coefficients,J. Franklin Institute, 6, 559–571, 1976. E. W. Kamen, An operator theory of functional differential equations,J. Differential Equations, 27, 274–297, 1978. E. B. Lee, Linear hereditary control systems, inCalculus of Variations and Control Theory, ed. D. L. Russel, Academic Press, 47–72, 1976. A. Manitius, Optimal control of hereditary systems, inControl Theory and Topics in Functional Analysis, Vol. III, 43–178, AEA, Vienna, 1976. A. Manitius, Controllability, observability and stabilizability of retarded systems,Proceedings 1976IEEE Conference on Decision and Control, Clearwater, Florida, 752–758. A. Manitius and A. Olbrot, Controllability conditions for linear systems with delayed state and control,Archiwum Automat. I. Telemetch., 17, 119–131, 1972. A. Manitius and R. Triggiani, Function space controllability of linear retarded systems: a derivation from abstract operator conditions, Centre de Recherches Mathématiques,Université de Montreal, Report CRM-605, March 1976. S. A. Minyuk, Complete controllability of a linear system with delay,Diff. Urav., 8, 254–259, 1972. E. D. Sontag, Linear systems over commutative rings: a survey,Richerche di Automatica, 7, 1–34, July 1976. E. D. Sontag, On split realizations of systems over rings,Information and Control, to appear. D. C. Youla, Synthesis of networks containing lumped and distributed elements,Proc. Symp. on Generalized Networks, Polytechnic Institute of Brooklyn, Brooklyn, New York, 289–343, 1966. D. C. Youla, The synthesis of networks containing lumped and distributed elements, Part 1,Network and Switching Theory, Academic Press, New York, 73–134, 1968. L. Zadeh and C. A. Desoer,Linear System Theory, McGraw-Hill, New York, 1963.