Ethylene Modulates the Developmental Plasticity and the Growth Balance Between Shoot and Root Systems in the In Vitro Grown Epiphytic Orchid Catasetum fimbriatum

Journal of Plant Growth Regulation - Tập 33 - Trang 513-525 - 2013
Maria Aurineide Rodrigues1, Luciano Freschi1, Eduardo Purgatto2, Vera Fátima Gomes Alves Pereira Lima3, Gilberto Barbante Kerbauy1
1Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
2Departamento de Alimentos e Nutrição Experimental, Instituto de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
3Departamento de Ciências Biológicas e Farmácia, Universidade Guarulhos, Guarulhos, Brazil

Tóm tắt

The epiphytic habitat is potentially one of the most stressful environments for plants, making the effective developmental control in response to external cues critical for epiphyte survival. Because ethylene mediates several abiotic stresses in plants, here, we have examined the ethylene influence in both shoot and root systems of the epiphytic orchid Catasetum fimbriatum. Under controlled conditions, ethylene production was quantified during an entire growth cycle of C. fimbriatum development in vitro, while treatments modulating either ethylene concentration or perception were carried out over the early growth phase of these plants. After treatments, growth measurements and histological features were studied in both shoot and root tissues. Ethylene production showed a decreasing trend over the period of organ elongation; however, it increased considerably when leaves were shed, and a new axillary bud was initiating. The early exposure of young plants to higher concentrations of ethylene triggered morphogenic responses that included root hair formation instead of velamen, and a combination of inhibitory effects (decreases in both stem enlargement and cellular/organ elongation) and inductive effects (increases in leaf and root formation, bud initiation and cellular thickening) on plant growth, which favored biomass allocation to roots. Conversely, inhibition of ethylene perception over the plant growth phase generally resulted in the opposite morphogenic responses. Our data indicate that periodic variations in ethylene concentration and/or sensitivity seem to modulate several developmental features in shoot and root systems of C. fimbriatum which could have adaptive significance during the growing phase of this epiphytic orchid.

Tài liệu tham khảo