Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thách thức đạo đức của công nghệ giáo dục, dữ liệu lớn và học tập cá nhân hóa: Phân loại và theo dõi sinh viên thế kỷ hai mươi mốt
Tóm tắt
Với sự gia tăng chi phí cung cấp giáo dục và những lo ngại về trách nhiệm tài chính, sự quan tâm đến tính trách nhiệm và kết quả ngày càng gia tăng, sự nhận thức cao hơn về phạm vi kỹ năng của giáo viên và các phong cách, nhu cầu học tập của học sinh, ngày càng có nhiều sự chú ý hơn được dành cho những hứa hẹn từ phần mềm trực tuyến và công nghệ giáo dục. Một trong những ứng dụng edtech được tiếp thị nhiều nhất, thú vị và gây tranh cãi bao gồm các chương trình giáo dục đa dạng mà các học sinh khác nhau được tiếp cận dựa trên cách mà các ứng dụng dữ liệu lớn đã đánh giá hồ sơ học tập tiềm năng của họ. Thường được mô tả là 'học tập cá nhân hóa', các chương trình này đặt ra một số lo ngại về đạo đức, đặc biệt khi được sử dụng ở cấp K-12. Bài báo này phân tích các mối lo ngại đạo đức này lập luận rằng việc mô tả chúng dưới thuật ngữ chung 'quyền riêng tư' làm đơn giản hóa quá mức các mối lo ngại và khiến các bên ủng hộ dễ dàng bác bỏ hoặc tối thiểu hóa chúng. Sáu mối lo ngại đạo đức rõ rệt được xác định: quyền riêng tư thông tin; tính ẩn danh; giám sát; quyền tự quyết; không phân biệt; và quyền sở hữu thông tin. Sự chú ý đặc biệt được dành cho việc các chương trình học tập cá nhân hóa có gây ra những mối lo ngại tương tự như những mối lo ngại đã nêu ra về việc theo dõi giáo dục trong những năm 1950 hay không. Bài báo kết thúc với việc thảo luận về ba chủ đề quan trọng cần xem xét trong các cuộc thảo luận về đạo đức và chính sách.
Từ khóa
#công nghệ giáo dục #dữ liệu lớn #học tập cá nhân hóa #đạo đức #quyền riêng tư #giám sátTài liệu tham khảo
Alarcon, A., Zeide, E., Rosenblat, A., Wikelius, K., boyd, d., Gangadharan, S. P., & Yu, C. (2014). Data & Civil Rights: Education primer, produced for Data & Civil Rights Conference. Accessed March 15, 2016, from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2542268.
Baltodano, M. (2017). The power brokers of neoliberalism: Philanthrocapitalists and public education. Policy Futures in Education, 15(2), 141–156.
Barocas, S., & Nissenbaum, H. (2014). Big data’s end run around anonymity and consent. In J. Lane, V. Stodden, S. Bender & H. Nissenbaum (Eds.), Privacy, big data, and the public good: Frameworks for engagement (p. 44). New York: Cambridge University Press.
Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review 104, 671–732.
Bennett, C. J. (1992). Regulating privacy: Data protection and public policy in Europe and the United States. Ithaca: Cornell University Press.
Bienkowski, M. (2017). Implications of privacy concerns for using student data for research: Panel summary. Workshop on Big Data in Education. Accessed March 4, 2018, from https://naeducation.org/wp-content/uploads/2017/05/Bienkowski-FINAL.pdf.
Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through educational analytics and data mining. Center for Technology and Learning, SRI International. Accessed March 1, 2018, from https://tech.ed.gov/wp-content/uploads/2014/03/edm-la-brief.pdf.
Bogle, A. (2014). What the failure of InBloom means for the student-data industry. Slate Future Tense Blog. Accessed March 8, 2016, from http://www.slate.com/blogs/future_tense/2014/04/24/what_the_failure_of_inbloom_means_for_the_student_data_industry.html.
Boninger, F., Molnar, A., & Murray, K. (2017). Asleep at the Switch: Schoolhouse commercialism, student privacy, and the failure of policymaking. National Education Policy Center: Report on Schoolhouse Commercialization Trends. Accessed February 1, 2018, from http://nepc.colorado.edu/files/publications/RB%20Trends%202017_2.pdf.
Bulger, M. (2016). Personalized learning: The conversations we’re not having, Working Paper 07.22.2016. Data and Society Research Institute. Accessed February 3, 2018, from https://datasociety.net/pubs/ecl/PersonalizedLearning_primer_2016.pdf.
Bulger, M., McCormick, P., & Pitcan, M. (2017). The legacy of inBloom, Working Paper 02.02.2017. Data and Society Research Institute. Accessed February 3, 2018, from https://datasociety.net/pubs/ecl/InBloom_feb_2017.pdf.
Burris, C. C., & Garrity, D. T. (2008). Detracking for excellence and equity,” see especially Chap. 2 “What Tracking is and How to Start Dismantling It.” Accessed March 15, 2016, from http://www.ascd.org/publications/books/108013/chapters/What-Tracking-Is-and-How-to-Start-Dismantling-It.aspx.
Campolo, A., Sanfilippo, M., Whittaker, M., & Crawford, K. (2017). AI Now 2017 Report. Accessed March 3, 2018, from https://ainowinstitute.org/AI_Now_2017_Report.pdf.
Citron, D. K., & Pasquale, F. (2014). The scored society: Due process for automated predictions. Washington Law Review, 89, 101–133.
Cohen, J. E. (2000). Examined lives: Informational privacy and the subject as object. Stanford Law Review, 52, 1373–1438.
Crawford, K., & Schultz, J. (2014). Big data and due process: Toward a framework to redress predictive privacy harms. Boston College Law Review, 55, 93–128.
Data Quality Campaign. (2015). State student data privacy legislation: What happened in 2015, and what is next? Accessed February 15, 2016, from https://2pido73em67o3eytaq1cp8au-wpengine.netdna-ssl.com/wp-content/uploads/2016/03/DQC-Student-Data-Laws-2015-Sept23.pdf.
Data Quality Campaign. (2017). Education data legislation review: 2017 state activity. Accessed January 28, 2018, from https://2pido73em67o3eytaq1cp8au-wpengine.netdna-ssl.com/wp-content/uploads/2017/09/DQC-Legislative-summary-0926017.pdf.
Davis, M. R. (2015). Lessons learned from security breaches. Education Week, 35(9), S6–S7.
Doran, L. (2017). Ransomware attacks force school districts to shore up–or pay up. Education Week, 36(17), 1–10.
Effrem, K. R. (2018). 6 Key takeaways from Congress’ hearing on protecting student data. The National Pulse. Accessed August 15, 2018, from https://thenationalpulse.com/commentary/6-key-takeaways-congress-hearing-protecting-student-data/.
English, W. (2016). Two cheers for nudging. Georgetown Journal of Law and Public Policy, 14, 829–840.
Flaherty, D. (1989). Protecting privacy in surveillance societies: The Federal Republic of Germany, Sweden, France, Canada, and the United States. Chapel Hill: University of North Carolina Press.
Future of Privacy Forum and Software & Information Industry Association. (2018). K-12 school service provider pledge to safeguard student privacy. Accessed August 20, 2018, from https://studentprivacypledge.org/privacy-pledge/.
Gellman, R. M. (1993). Fragmented, incomplete, and discontinuous: The failure of federal privacy regulatory proposals and institutions. Software Law Journal, 6, 199.
Hartzog, W., & Selinger, E. (2013a). Big data in small hands. Stanford Law Review Online, 66, 81–88.
Hartzog, W., & Selinger, E. (2013b). Obscurity: A better way to think about your data than privacy, Atlantic. Accessed January 10, 2016, from http://www.theatlantic.com/technology/archive/2013/01/obscurity-a-better-way-to-think-about-your-data-than-privacy/267283/.
Herold, B. (2014). InBloom to shut down amid growing data-privacy concerns, Education Week. Accessed March 8, 2016, from http://blogs.edweek.org/edweek/DigitalEducation/2014/04/inbloom_to_shut_down_amid_growing_data_privacy_concerns.html.
Herold, B. (2017). Personalized learning: Modest gains, big challenges, RAND study finds, Education Week. https://blogs.edweek.org/edweek/DigitalEducation/2017/07/personalized_learning_research_implementation_RAND.html. Accessed 10 February 2018.
Horn, M. B., & Staker, H. (2011). The rise of K-12 blended learning. Innosight Institute. Accessed January 20, 2018, from https://www.christenseninstitute.org/publications/the-rise-of-k-12-blended-learning/.
Horn, M. B., Staker, H., & Christensen, C. (2013). Is K-12 blended learning disruptive? An introduction to the theory of hybrids. Accessed January 20, 2018, from https://www.christenseninstitute.org/publications/hybrids/.
Kelly, J. T. (2016). Non-paternalist nudges. Georgetown Journal of Law and Public Policy, 14, 807–816.
Kerr, I., & Earle, J. (2013). Prediction, preemption, presumption: How big data threatens big picture privacy. Stanford Law Review Online, 66, 65–72.
Kohli, S. (2014). Modern-day segregation in public schools, The Atlantic. Accessed March 1, 2016, from http://www.theatlantic.com/education/archive/2014/11/modern-day-segregation-in-public-schools/382846/.
Lerman, J. (2013). Big data and its exclusions. Stanford Law Review Online, 66, 55–63.
Lichtenberg, J. (2016). For your own good: Informing, nudging, coercing. Georgetown Journal of Law and Public Policy, 14, 663–682.
Loveless, T. (2013). The resurgence of ability grouping and persistence of tracking, (Part II of the 2013 Brown Center Report on American Education), Brookings Report. Accessed March 3, 2016, from http://www.brookings.edu/research/reports/2013/03/18-tracking-ability-grouping-loveless.
Mirel, J. (2006). The traditional high school: Historical debates over its nature and function, Education Next (Winter) Vol 6, No. 1, pp. 14–21. http://eric.ed.gov/?id=EJ763310. Accessed 1 March 2016.
National Academy of Education Workshop Summary. (2017). Big data in education: Balancing the benefits of educational research and student privacy. Accessed February 23, 2018, from http://naeducation.org/wp-content/uploads/2017/05/NAEd_BD_Booklet_FINAL_051717_3.pdf.
National Association of State Boards of Education. (2015). Comparison of 2015 Federal Education Data Privacy Bills. Accessed August 15, 2018, from http://www.nasbe.org/wp-content/uploads/2015-Federal-Education-Data-Privacy-Bills-Comparison-2015.07.22-Public.pdf.
New, J. (2016). Building a data-driven education system in the United States. Center for Data Innovation. Accessed August 15, 2018, from http://www2.datainnovation.org/2016-data-driven-education.pdf.
Ohm, P. (2014). General principles for data use and analysis. In J. Lane, V. Stodden, S. Bender & H. Nissenbaum (Eds.), Privacy, big data, and the public good: Frameworks for engagement (pp. 96–111). New York: Cambridge University Press.
Organization for Economic Cooperation and Development (OECD). (2015). Students, computers and learning: Making the connection. Programme for International Student Assessment, OECD Publishing. Accessed August 16, 2018, from https://read.oecd-ilibrary.org/education/students-computers-and-learning_9789264239555-en#page1.
Pane, J. F., Steiner, E. D., Baird, M. D., Hamilton, L. S., & Pane, J. D. (2017). Informing progress: Insights on personalized learning implementation and effects. RAND Report. Accessed February 13, 2018, from https://www.rand.org/pubs/research_reports/RR2042.html.
Pariser, E. (2011). The filter bubble: How the new personalized web is changing what we read and how we think. New York: Penguin Books.
President’s Council of Advisors on Science and Technology. (2014). Big data and privacy: A technological perspective. Accessed December 10, 2015, from http://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_and_privacy_-_may_2014.pdf.
Regan, P. M. (1995). Legislating privacy: Technology, social values, and public policy. Chapel Hill: University of North Carolina Press.
Regan, P. M. (2017). Big data and privacy. In J. Bachner, K. W. Hill, & B. Ginsberg (Eds.), Analytics, policy and governance. New Haven: Yale University Press.
Regan, P. M., & Bailey, J. (2018). Big data, privacy and education applications. In Presented at Surveillance Studies Network Conference, June 2018. Denmark: Aarhus University.
Regan, P. M., & Khwaja, E. T. (2017). Ethical implementation of big data in education: Policy and practices in the US and Canada. In Presented at the Law and Society Association Annual Conference, June 2017, Mexico City.
Roberts-Mahoney, H., Means, A. J., & Garrison, M. J. (2016). Netflixing human capital development: Personalized learning technology and the corporatization of K-12 education, Journal of Education Policy 1–16.
Roscorla, T. (2016). 3 Student Data Privacy Bills that Congress Could Act On, Government Technology: Center for Digital Education. Accessed August 15, 2018, from http://www.govtech.com/education/k-12/3-Student-Data-Privacy-Bills-That-Congress-Could-Act-On.html.
Rubinstein, I. S. (2013). Big Data: The end of privacy or a new beginning? International Data Privacy Law, 3(2), 74–87.
Schwartz, P. M. (2000). Internet privacy and the state. Connecticut Law Review, 32, 815.
Schwartz, P. M. (2004). Property, privacy, and personal data. Harvard Law Review, 117(7), 2055–2128.
Singer, N. (2013). Deciding Who Sees Students’ Data, The New York Times. Accessed February 16, 2016, from http://www.nytimes.com/2013/10/06/business/deciding-who-sees-students-data.html.
Singer, N. (2014). InBloom student data repository to close. The New York Times Bit Blog. http://bits.blogs.nytimes.com/2014/04/21/inbloom-student-data-repository-to-close/?_r=0. Accessed 8 March 2016.
Solove, D. (2008). Understanding privacy. Cambridge: Harvard University Press.
Strauss, V. (2013). The bottom line on student tracking, The Washington Post. Accessed March 8, 2016, from https://www.washingtonpost.com/news/answer-sheet/wp/2013/06/10/the-bottom-line-on-student-tracking/.
Sunstein, C. R. (2015). The ethics of nudging. Yale Journal on Regulation, 32(2), 413–450.
Sweeney, L. (2000). Uniqueness of simple demographics in the US population (Laboratory for International Data Privacy, Working Paper LIDAP-WP4). Accessed December 10, 2015, from http://dataprivacylab.org/projects/identifiability/index.html.
Sweeney, L., Abu, A., & Winn, J. (2013). Identifying participants in the personal genome project by name, Harvard University Data Privacy Lab, White Paper 1021-1 (April 24). Accessed December 10, 2015, from http://dataprivacylab.org/projects/pgp/1021-1.pdf.
Tene, O., & Polonetsky, J. (2013). Big data for all: Privacy and user control in the age of analytics. Northwestern Journal of Technology and Intellectual Property, 11(5), 239–273,253.
Tucker, M. (2015). Student tracking vs academic pathways: Different… or the same? Education Week (October 15). Accessed March 8, 2016, from http://blogs.edweek.org/edweek/top_performers/2015/10/tracking_vs_pathways_differentor_the_same.html.
West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards, Governance Studies at Brookings (September). Accessed March 5, 2016, from http://www.brookings.edu/~/media/research/files/papers/2012/9/04-education-technology-west/04-education-technology-west.pdf.
Westin, A. (1967). Privacy and freedom. New York: Atheneum.
Zeide, E. (2016). Student privacy principles for the age of big data: Moving beyond FERPA and FIPPS. Drexel Law Review, 8, 101–160.
Zeide, E. (2017). The limits of education purpose limitations. University of Miami Law Review, 41, 494–527.