Etching characteristics of Si{110} in 20 wt% KOH with addition of hydroxylamine for the fabrication of bulk micromachined MEMS
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zubel I, Kramkowska M (2005) Possibilities of extension of 3D shapes by bulk micromachining of different Si (hkl) substrates. J Micromech Microeng 15(3):485–493
Yang EH, Yang SS, Han SW, Kim SY (2005) Fabrication and dynamic testing of electrostatic actuators with p+ silicon diaphragms. Sens Actuators A phys 50:151–156
Pal P, Sato K (2009) Complex three dimensional structures in Si{100} using wet bulk micromachining. J Micromech Microeng 19(10):105008
Xu YW, Michael A, Kwok CY (2011) Formation of ultra-smooth 45 micromirror on (100) silicon with low concentration TMAH and surfactant: techniques for enlarging the truly 45 portion. Sens Actuators A Phys 166(1):164–171
Lee S, Park S, Cho D (1999) The surface/bulk micromachining (SBM) process: a new method for fabricating released microelectromechanical systems in single crystal silicon. J Microelectromech Syst 8:409–416
Pal P, Gosalvez MA, Sato K (2010) Silicon micromachining based on surfactant-added tetramethyl ammonium hydroxide: etching mechanism and advanced application. Jpn J Appl Phys 49:056702
Gosalvez MA, Pal P, Ferrando N, Hida H, Sato K (2001) Experimental procurement of the complete 3D etch rate distribution of Si in anisotropic etchants based on vertically micromachined wagon wheel samples. J Micromech Microeng 21(12):125007
Sato K, Shikida M, Matsushima Y, Yamashiro T, Asaumi K, Iriye Y, Yamamoto M (1998) Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sens Actuators A Phys 61(1):87–93
Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137(11):3612–3626
Dutta S, Imran M, Kumar P, Pal R, Datta P, Chatterjee R (2011) Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon (110). Microsyst Technol 17(10–11):1621–1628
Tanaka H, Yamashita S, Abe Y, Shikida M, Sato K (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuators A Phys 114(2):516–520
Pal P, Sato K (2010) Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst Technol 16(7):1165–1174
Moldovan C, Iosub R, Dascalu D, Nechifor G (1999) Anisotropic etching of silicon in a complexant redox alkaline system. Sens Actuators B Chem 58(1):438–449
Van den Meerakker JE (1990) The reduction of hydrogen peroxide at silicon in weak alkaline solutions. Electrochim Acta 35(8):1267–1272
Sotoaka R (2008) New etchants for high speed anisotropic etching of silicon. J Surf Finish Soc Jpn 59(2):104–106
Yang CR, Chen PY, Yang CH, Chiou YC, Lee RT (2005) Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions. Sens Actuators A Phys 119(1):271–281
Hein A, Dorsch O, Obermeier E (1997) Effects of metallic impurities on anisotropic etching of silicon in aqueous KOH-solutions. In: Solid state sensors and actuators, TRANSDUCERS’97 (Chicago, U.S). IEEE, New York, pp 687–690
Zubel I, Kramkowska M (2002) The effect of alcohol additives on etching characteristics in KOH solutions. Sens Actuators A Phys 101(3):255–261
Sundaram KB, Vijayakumar A, Subramanian G (2005) Smooth etching of silicon using TMAH and isopropyl alcohol for MEMS applications. Microelectron Eng 77(3):230–241
Merlos A, Acero M, Bao MH, Bausells J, Esteve J (1993) TMAH/IPA anisotropic etching characteristics. Sens Actuators A Phys 37:737–743
Ashok A, Pal P (2015) Silicon micromachining in 25 wt% TMAH without and with surfactant concentrations ranging from ppb to ppm. Microsyst Technol 23(1):47–54
Pal P, Sato K, Gosalvez MA, Tang B, Hida H, Shikida M (2010) Fabrication of novel microstructures based on orientation dependent adsorption of surfactant molecules in TMAH solution. J Micromech Microeng 21(1):015008
Resnik D, Vrtacnik D, Aljancic U, Mozek M, Amon S (2005) The role of triton surfactant in anisotropic etching of 110 reflective planes on (100) silicon. J Micromech Microeng 15(6):1174–1183
Cheng D, Gosálvez MA, Hori T, Sato K, Shikida M (2006) Improvement in smoothness of anisotropically etched silicon surfaces: effects of surfactant and TMAH concentrations. Sens Actuators A Phys 125(2):415–421
Tang B, Sato K, Zhang D, Cheng Y (2014) Fast Si(100) etching with a smooth surface near the boiling temperature in surfactant-modified tetramethylammonium hydroxide solutions. Micro Nano Lett 9(9):582–584
Dziuban JA, Walczak R (2001) EMSi-microwave enhanced fast deep anisotropic etching of silicon for MEMS. Sens Mater 13(1):41–55
Chen J, Liu L, Li Z, Tan Z, Jiang Q, Fang H, Xu Y, Liu Y (2002) Study of anisotropic etching of (100) Si with ultrasonic agitation. Sens Actuators A 96(2):152–156
Kolesar ES Jr, Carver MW (1989) Deep anisotropic etching of tapered channels in (110)-oriented silicon. Chem Mater 1(6):634–639
Pal P, Gosalvez MA, Sato K, Hida H, Xing Y (2014) Anisotropic etching on Si{110}: experiment and simulation for the formation of microstructures with convex corners. J Micromech Microeng 24(12):125001
Lee D, Yu K, Krishnamoorthy U, Solgaard O (2009) Vertical mirror fabrication combining KOH etch and DRIE of (110) silicon. J Microelectromech Syst 18(1):217–227
Holke A, Henderson HT (1999) Ultra-deep anisotropic etching of (110) silicon. J Micromech Microeng 9(1):51–57
Uenishi Y, Tsugai M, Mehregany M (1995) Micro-opto-mechanical devices fabricated by anisotropic etching of (110) Silicon. J Micromech Microeng 5(4):305–312
Kim SH, Lee SH, Lim HT, Kim YK, Lee SK (1997) Anisotropic bulk etching of (110) Silicon with high aspect ratio. IEEJ Trans Sens Micromach 118(1):32–36
Krause P, Obermeier E (1995) Etch rate and surface roughness of deep narrow U-grooves in (110)-oriented silicon. J Micromech Microeng 5(2):112–114
Yang CR, Chen PY, Chiou YC, Lee RT (2005) Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution. Sens Actuators A Phys 119(1):263–270
Divan R, Moldovan N, Camon H (1999) Roughning and smoothing dynamics during KOH silicon etching. Sens Actuators A Phys 74(1):18–23
Wei C, Saraf SR, Rogers WJ, Mannan MS (2004) Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants. Thermochim Acta 421(1):1–9
Gosálvez MA, Zubel I, Viinikka E (2015) Wet etching of silicon in handbook of silicon based MEMS materials and technologies, 2nd ed. William Andrew Publishing, Espoo, pp 470–502
Luňák S, Vepřek-Šiška J (1974) The catalytic effect of cations on the decomposition of alkaline solutions of hydroxylamine. Collect Czech Chem Commun 39(2):391–395
Alcami M, Mo O, Yanez M (1991) Ab initio molecular orbital treatment of hydroxylamine-X+-water and hydroxylamine-X+-ammonia (X = H, Li) clusters. Chem Phys 151(1):21–36
Vizoso S, Rode BM (1995) The structure of hydroxylamine–water mixtures. Z Naturforsch A Phys Sci 50(2–3):263–273
Ashok A, Pal P (2014) Investigation of anodic silicon dioxide thin films for MEMS applications. Micro Nano Lett 9(12):830–834
Palik ED, Glembocki OJ, Heard I Jr, Burno PS, Tenerz L (1991) Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys 70(6):3291–3300
Van Veenendaal E, Sato K, Shikida M, Van Suchtelen J (2001) Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH. Sens Actuators A Phys 93(3):219–231
Pal P, Sato K, Gosalvez MA, Shikida M (2007) Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J Micromech Microeng 17(11):2299–2307
Kim B, Cho DI (1998) Aqueous KOH etching of silicon (110) etch characteristics and compensation methods for convex corners. J Electrochem Soc 145:2499–2508
Pal P, Singh SS (2013) A simple and robust model to explain convex corner undercutting in wet bulk micromachining. Micro and Nano Syst Lett 1(1):1–6
Pal P, Sato K, Shikida M, Gosalvez MA (2009) Study of corner compensating structures and fabrication of various shapes of MEMS structures in pure and surfactant added TMAH. Sens Actuators A Phys 154(2):192–203
Dong W, Zhang X, Liu C, Li M, Xu B, Chen W (2004) Mechanism for convex corner undercutting of (110) silicon in KOH. Microelectron J 35(5):417–419
Pal P, Sato K (2015) A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching. Micro Nano Syst Lett 3(6):1–42