Estimation of velocity eigenfunction and vorticity distributions from the timeline visualization technique

Experiments in Fluids - Tập 6 - Trang 228-236 - 1988
D. Lusseyran1, D. Rockwell1
1Dept. of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, USA

Tóm tắt

For the case of quasi-periodic flow, it is demonstrated that use of the hydrogen bubble timeline method leads to reasonable estimates of the eigenfunction of the streamwise velocity fluctuation. Both amplitude and phase distributions across an unstable wake flow are well-approximated. It is shown that the vorticity extrema, as well as the degree of concentration of vorticity, are in good agreement with those calculated from linear stability theory. A critical assessment is given of the possible uncertainties associated with this technique: the existence of a finite, but unknown cross-stream velocity component; bubble rise due to buoyancy effects; wake defect created downstream of the bubble wire; and resolution of the digitized image. Furthermore, the uncertainty in the streamwise velocity, arising from existence of a finite cross-stream velocity component, is actually less than that corresponding to a single-element hot film probe over certain regimes of operation.

Tài liệu tham khảo

Abernathy, F. H.; Bertschy, J. R.; Chen, R. W. 1977: Turbulence spectra using laser-Doppler anemometry and selected seeding. Proceedings of 5th Symposium on Turbulence (eds. Patterson, G. K.; Zakin, J. L.) pp. 133–142. University of Missouri-Rolla Betchov, R.; Criminale, W. O. 1967: Stability of parallel flows. New York: Academic Press Bradshaw, P. 1971: An introduction to turbulence and its measurement. New York: Pergamon Press Grass, A. J. 1971: Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 223–255 Gumas, C.; Rockwell, D. 1986: The Fourier descriptor technique: A means of pattern recognition in fluid mechanics. (To be submitted for publication) Lu, L.-J.; Smith, C. 1986: Image processing of hydrogen bubble flow visualization for determination of turbulence statistics and bursting characteristics. Exp. Fluids 3, 349–356 Lusseyran, D.; Rockwell, D. 1986: On interpretation of flow-visualization in unsteady shear flows. Unpublished report available from Dept. of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem/Pa, USA Mattingly, G. E.; Criminale, W. O. 1972: The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51, 233–273 Ongoren, A.; Chen, J.; Rockwell, D. 1988: Multiple-time-surfacc characterization of time-dependent, three-dimensional flows. (Submitted to) Exp. Fluids Schraub, F. A.; Kline, S. J.; Henry, J.; Runstadtler, P. W.; Littell, A. 1965: Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows. J. Basic Eng. 7, 429–444 Smith, C. R.; Paxson, R. D. 1983: The technique for evaluation of three-dimensional behavior in turbulent boundary layers using computer augmented hydrogen bubble-wire flow visualization. Exp. Fluids 1, 43–49