Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize
Tóm tắt
Từ khóa
Tài liệu tham khảo
IPCC. IPCC fourth assessment report: climate change 2007. Cambridge: Cambridge University Press; 2007.
Yuan W, Zhou G. Theoretical study and research prospect on drought indices. Adv Earth Sci. 2004;19(6):982–91.
Zhou S, Duursma RA, Medlyn BE, Kelly JWG, Prentice IC. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric For Meteorol. 2013;182–183:204–14.
Zhang J, Xu Y, Yao F, Wang P, Guo W, Li L, Yang L. Advances in estimation methods of vegetation water content based on optical remote sensing techniques. Sci China Tech Sci. 2010;53:1159–67.
Mutanga O, Skidmore AK, van Wieren S. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS J Photogramm. 2003;57:263–72.
Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C, Cho MA. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J Photogramm. 2008;63:409–26.
Sridhar BBM, Vincent RK, Roberts SJ, Czajkowski K. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils. Int J Appl Earth Obs. 2011;13:676–81.
Viña A, Gitelson AA. New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophys Res Lett. 2005. https://doi.org/10.1029/2005gl023647 .
Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens Environ. 2011;115:3468–78.
Zhang L, Zhou Z, Zhang G, Meng Y, Chen B, Wang Y. Monitoring the leaf water content and specific leaf weight of cotton (Gossypium hirsutum L.) in saline soil using leaf spectral reflectance. Europ J Agron. 2012;41:103–17.
Wang L, Hunt ER Jr, Qu JJ, Hao X, Daughtry CST. Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices. Remote Sens Environ. 2013;129:103–10.
Yi Q, Bao A, Wang Q, Zhao J. Estimation of leaf water content in cotton by means of hyperspectral indices. Comput Electron Agr. 2013;90:144–51.
Yi Q, Wang F, Bao A, Jiapaer G. Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative transfer models. Int J Appl Earth Obs. 2014;33:67–75.
Zhang F, Zhou G, Christer N. Remote estimation of the fraction of absorbed photosynthetically active radiation for a maize canopy in Northeast China. J Plant Ecol. 2015;8(4):429–35.
Zhang F, Zhou G. Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the North Plain China. Remote Sens. 2015;7:15203–23.
Zhang F, Zhou G. Deriving a light use efficiency estimation algorithm using in situ hyperspectral and eddy covariance measurements for a maize canopy in Northeast China. Ecol Evol. 2017;7:4735–44.
Peñuelas J, Filella I, Biel C, Serrano L, Save R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens. 1993;14:1887–905.
Peñuelas J, Gamon JA, Fredeen AL, Merino J, Field CB. Reflectance indices associated with physiological changes in nitrogen and water limited sunflower leaves. Remote Sens Environ. 1994;48:135–46.
Stimson HC, Breshears DD, Ustin SL, Kefauver SC. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ. 2005;96:108–18.
Cohen WB. Temporal versus spatial variation in leaf reflectance under changing water stress conditions. Int J Remote Sens. 1991;12(9):1856–76.
Mirzaie M, Darvishzadeh R, Shakiba A, Matkan AA, Atzberger C, Skidmore A. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int J Appl Earth Obs. 2014;26:1–11.
Cao Z, Wang Q, Zheng C. Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecol Indic. 2015;54:96–107.
Dzikiti S, Verreynne JS, Stuckens J, Strever A, Verstraeten WW, Swennen R, Coppin P. Determining the water status of Satsuma mandarin trees [Citrus Unshiu Marcovitch] using spectral indices and by combining hyperspectral and physiological data. Agric For Meteorol. 2010;150(3):369–79.
Danson FM, Steven MD, Malthus TJ, Clark JA. High-spectral resolution data for determining leaf water content. Int J Remote Sens. 1992;13:461–70.
Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1—theoretical approach. Remote Sens Environ. 2002;82:188–97.
Clevers JGPW, Kooistra L, Schaepman ME. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. Int J Appl Earth Obs. 2008;10:388–97.
Clevers JGPW, Kooistra L, Schaepman ME. Estimating canopy water content using hyperspectral remote sensing data. Int J Appl Earth Obs. 2010;12:119–25.
Jacquemoud S, Ustin S, Verdebout J, Schmuck G, Andreoli G, Hosgood B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens Environ. 1996;56:194–202.
Burgan RE. Use of remotely sensed data for fire danger estimation. EARSeL Adv Remote Sens. 1996;4(4):1–8.
Hunt ER Jr, Rock BN, Nobel PS. Measurement of leaf relative water content by infrared reflectance. Remote Sens Environ. 1987;22:429–35.
Inoue Y, Morinaga S, Shibayama M. Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements. Jpn J Crop Sci. 1993;62(3):462–9.
Maki M, Ishiahra M, Tamura M. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens Environ. 2004;90:441–50.
de Jong SM, Addink EA, Hoogenboom P, Nijland W. The spectral response of Buxus sempervirens to different types of environmental stress—a laboratory experiment. ISPRS J Photogramm Remote Sens. 2012;74:56–65.
Yebra M, Dennison PE, Chuvieco E, Riaño D, Zylstra P, Hunt ER Jr, Danson FM, Qi Y, Jurdao S. A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote Sens Environ. 2013;136:455–68.
Qi Y, Dennison P, Jolly W, Kropp R, Brewer S. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass. Remote Sens Environ. 2014;150:198–206.
Running SW, Gower ST. Forest-BGC, a general model of forest ecosystem processes for regional applications II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 1991;9:147–60.
Running SW, Nemani RR. Regional hydrologic and carbon balance responses of forests resulting from potential climate change. Clim Change. 1991;19:349–68.
de Jong SM, Addink EA, Doelman JC. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry. Int J Appl Earth Obs. 2014;27:128–36.
Liu G, Guo A, Ren S, An S, Zhao H. Compensatory effects of re-watering on summer maize threatened by water stress at seedling period. Chin J Ecol. 2004;23(3):24–9.
Bowyer P, Danson FM. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level. Remote Sens Environ. 2004;92:297–308.
Rouse JW, Haas Jr RH, Schell JA, Deering DW. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Report RSC 1978-1; Remote Sensing Center, Texas A&M University: College Station, TX, USA, 1973.
Gitelson AA, Merzlyak MN. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing. J Plant Physiol. 1996;148:493–500.
Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ. Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett. 2005. https://doi.org/10.1029/2005gl022688 .
Peñuelas J, Pinol J, Ogaya R, Filella I. Estimation of plant water concentration by the reflectance Water Indices WI (R900/R970). Int J Remote Sens. 1997;18:2869–75.
Hunt ER Jr, Rock BN. Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens Environ. 1989;30:43–54.
Zarco-Tejada PJ, Ustin SL. Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites. In: International geoscience and remote sensing symposium, 2001. IGARSS’01, vol. 1; 2001. p. 342–4.
Gao BC. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 1996;58:257–66.
Chen D, Huang J, Jackson TJ. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens Environ. 2005;98:225–36.
Chattaraj S, Chakraborty D, Garg RN, Singh GP, Gupta VK, Singh S, Singh R. Hyperspectral remote sensing for growth-stage-specific water use in wheat. Field Crop Res. 2013;144:179–91.
Wang Q, Li P. Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements. Hydrol Process. 2012;26:1230–41.
Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire J. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ. 2001;77:22–33.
Jones HG. Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot. 2004;55:2427–36.
Lichtenthaler HK. Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol. 1996;148(5):4–14.
Sims DA, Gamon JA. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ. 2003;84:526–37.
Colombo R, Meroni M, Marchesi A, Busetto L, Rossini M, Giardino C, Panigada C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens Environ. 2008;112:1820–34.