Estimation of upper bounds of certain matrix operators on Binomial weighted sequence spaces

Taja Yaying1, Bipan Hazarika2, S. A. Mohiuddine3, M. Mursaleen4,5,6
1Department of Mathematics, Dera Natung Government College, Itanagar, India
2Department of Mathematics, Gauhati University, Guwahati, India
3Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
4Department of Mathematics, Aligarh Muslim University, Aligarh, India
5Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan
6Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altay, B., Başar, F., Mursaleen, M.: On the Euler sequence spaces which include the spaces $$\ell _{p}$$ and $$\ell _{\infty }$$ I. Inf. Sci. 176, 1450–1462 (2006)

Altay, B., Başar, F.: On some Euler sequence spaces of nonabsolute type. Ukr. Math. J. 57, 1–17 (2005)

Başarir, M., Kara, E.E., Konca, Ş.: On some new weighted Euler sequence spaces and compact operators. Math. Inequal. Appl. 17, 649–664 (2014)

Bennett, G.: Inequalities complimentary to Hardy. Q. J. Math. 49, 395–432 (1998)

Bişgin, M.C.: The binomial sequence spaces of nonabsolute type. J. Inequal. Appl. 309, 16 (2016)

Bişgin, M.C.: The binomial sequence spaces which include the spaces $$\ell _{p}$$ and $$\ell _{\infty }$$ and geometric properties. J. Inequal. Appl. 304, 15 (2016)

Borwein, D., Cass, F.P.: Nörlund matrices as bounded operators on $$\ell _p$$. Arch. Math. 42, 464–469 (1984)

Borwein, D.: Nörlund operators on $$\ell _p$$. Can. Math. Bull. 36, 8–14 (1993)

Hardy, G.H.: An inequality for Hausdorff means. J. Lond. Math. Soc. 18, 46–50 (1943)

Jameson, G.J.O., Lashkaripour, R.: Lower bounds of operators on weighted $$\ell _p$$ spaces and Lorentz sequence spaces. Glasg. Math. J. 42, 211–223 (2000)

Lashkaripour, R., Foroutannia, D.: Some inequalities involving upper bounds for some matrix operators I. Czech. Math. J. 57, 553–572 (2007)

Lashkaripour, R., Foroutannia, D.: Inequlity involving upper bounds for certain matrix operators. Proc. Indian Acad. Sci. (Math. Sci.) 116, 325–336 (2006)

Lashkaripour, R., Foroutannia, D.: Lower bounds for matrices on weighted sequence spaces. J. Sci. Islam. Repub. Iran 18, 49–56 (2007)

Lashkaripour, R., Talebi, G.: Lower bounds of Copson for Hausdorff matrices on weighted sequence spaces. J. Sci. Islam. Repub. Iran 22, 153–157 (2011)

Meng, J., Mei, L.: Binomial difference sequence spaces of fractional order. J. Inequa. Appl. 274, 18 (2018)

Roopaei, H., Foroutannia, D.: The norm of matrix operators on Cesàro weighted sequence space. Linear Multilinear Algebra 67(1), 175–185 (2019)

Talebi, G., Dehghan, M.A.: Upper bounds for the operator norms of Hausdorff matrices and Nörlund matrices on the Euler weighted sequence space. Linear Multilinear Algebra 62, 1275–1285 (2014)

Talebi, G., Dehghan, M.A.: Approximation of upper bound for matrix operators on the Fibonacci weighted sequence spaces. Linear Multilinear Algebra 64(2), 196–207 (2015)

Wilansky, A.: Summability Through Functional Analysis. North-Holland Mathematics Studies, vol. 85. North-Holland, Amsterdam (1984)

Yaying, T., Hazarika, B.: On sequence spaces generated by binomial difference operator of fractional order. Math. Slovaca 69(4), 901–918 (2019)