Đánh giá các nguy cơ nhiệt trong đá xung quanh đường hầm metro dưới biên giới nhiệt độ lặp lại: một nghiên cứu trường hợp

Springer Science and Business Media LLC - Tập 29 - Trang 67063-67075 - 2022
Wei Liu1,2, Shufei Liang1, Qingwei Huang3, Yueping Qin1
1School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, China
2Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing, China
3School of Emergency Management and Safety Engineering, China University of Mining and Technology-Beijing, Beijing, China

Tóm tắt

Các nguy cơ nhiệt của đá xung quanh đường hầm metro đang trở nên rõ ràng, trong đó quá trình truyền nhiệt trong đá xung quanh đóng một vai trò quan trọng. Do độ sâu chôn lấp nông, đường hầm metro gặp phải sự trao đổi nhiệt phức tạp hơn dưới tác động lặp lại của biến động nhiệt độ theo chu kỳ của bầu khí quyển và biến đổi nhiệt độ của gió trong đường hầm, nhưng vấn đề này chưa được giải quyết triệt để. Trong nghiên cứu này, một mô hình truyền nhiệt tạm thời của đá xung quanh đường hầm dựa trên các biên độ nhiệt độ chu kỳ đôi đã được thiết lập. Một công cụ giải phương trình đã được phát triển để ước tính sự gia tăng nhiệt độ và truyền nhiệt của đá xung quanh. Độ chính xác của mô hình này sau đó đã được xác minh bằng cách so sánh với các giá trị thực nghiệm trước đó và các phương trình bán thực nghiệm. Kết quả cho thấy rằng nhiệt độ của đá xung quanh ở các độ sâu khác nhau vẫn dao động theo các sóng điều hòa đơn giản, và có một số vùng bị ảnh hưởng nặng nề bởi tác động lặp lại, chẳng hạn như lớp đất phủ trên đường hầm. Đá xung quanh thường thể hiện sự tích trữ nhiệt theo chu kỳ hàng năm, nhưng tổng lượng nhiệt tích trữ giảm dần qua các năm cho đến khi có xu hướng ổn định. Hơn nữa, độ sâu chôn lấp của đường hầm càng nông thì ảnh hưởng của nhiệt độ mặt đất càng lớn và sự gia tăng nhiệt độ trong đá xung quanh đường hầm càng cao. Nghiên cứu này cung cấp một cách tiếp cận thay thế để xác định lượng nhiệt tích trữ của đá xung quanh đường hầm và đánh giá quá trình biểu hiện thảm họa nhiệt của hệ thống metro.

Từ khóa

#đường hầm metro #nghệ thuật nhiệt #đá xung quanh #mô hình truyền nhiệt #nhiệt độ chu kỳ #nguy cơ nhiệt

Tài liệu tham khảo

Adil Zainal O, Yumruta R (2015) Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs. Energy 82:758–768 Alkhaier F, Flerchinger GN, Su Z (2012) Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description. Hydrol Earth Syst Sci 16:1817–1831 Ampofo F, Maidment G, Missenden J (2004) Underground railway environment in the UK Part 1: Review of thermal comfort. Appl. Therm. Eng. 24:611–631 Ampofo F, Maidment G, Missenden J (2004) Underground railway environment in the UK Part 2: Investigation of heat load. Appl. Therm. Eng. 24:633–645 Barla M, Di Donna A, Perino A (2016) Application of energy tunnels to an urban environment. Geothermics 61:104–113 Bogdanovská G, Molnár V, Fedorko G (2019) Failure analysis of condensing units for refrigerators with refrigerant R134a, R404A. Int J Refrig 100:208–219 Dong Z, Qin Y, Wu J, Guo K (2019) Experimental analysis on temperature field variations of heterogeneous surrounding rock under the condition of periodically changing mine ventilation. Energy Sources Part A: Recov Utiliz Environ Effects 43:1869–1879 Feng Q, Jiang BS, Zhang Q, Wang G (2016) Reliability research on the 5-cm-thick insulation layer used in the Yuximolegai tunnel based on a physical model test. Cold Reg. Sci. Tech. 124:54–66 Gow LJ, Barrett DJ, O’Grady AP, Renzullo LJ, Phinn SR (2018) Subsurface water-use strategies and physiological responses of subtropical eucalypt woodland vegetation under changing water-availability conditions. Agricult Forest Meteorol 248:348–360 Hu ZH, Li XZ, Zhao XB, Xiao L, Wu W (2008) Numerical analysis of factors affecting the range of heat transfer in earth surrounding three subways. J China Univ Min Technol 18:67–71 Insana A, Barla M (2020) Experimental and numerical investigations on the energy performance of a thermo-active tunnel. Renew. Energy 152:781–792 Jenkins K, Gilbey M, Hall J, Glenis V, Kilsby C (2014) Implications of climate change for thermal discomfort on underground railways. Transp Res Part D: Transp Environ 30:1–9 Ji YZ, Tu GB, Sun L (2001) Discussion on energy saving method of underground railway environmental control system. Shandong Build Mater 22:29–31 Jiang B (2018) Research on air temperature of metro tunnel during the initial stage. Urban Rapid Rail Transit 31:113–118 Jin X, Zhang XS, Cao YR, Wang G (2012) Thermal performance evaluation of the wall using heat flux time lag and decrement factor. Energy Build. 47:369–374 Jin H, Yu KW, Gong QM, Zhou SH (2018) Load-carrying capability of shield tunnel damaged by shield shell squeezing action during construction. Thin-Walled Struct. 132:69–78 Jun KJ, Hwang YC, Yune CY (2017) Field measurement of temperature inside tunnel in winter in Gangwon, Korea. Cold Reg. Sci. Tech. 143:32–42 Ke MT, Cheng TC, Wang WP (2002) Numerical simulation for optimizing the design of subway environmental control system. Build. Environ. 37:1139–1152 Krasyuk AM, Lugin IV, P’yankova AY (2015) Delineation of soil body area exposed to thermal effect of subway stations and tunnels. J Min Sci 51:138–143 Li YA, Gao YN, Yang ZJ, Liu XL (2011) Study on change regularity of air temperature underground tunnel based on intermittent operating of heat pump. Appl Mech Mater 90–93:1671–1674 Li XZ, Xiong ZY, Qiao HJ, Ma J, Zhang XH, Du J (2012) Monitoring and analysis of heat transfer through surrounding rocks of subway tunnel. Chin J Undergr Space Eng 8:105–110 Li Z, Chen C, Pan S, Yan L, Li K (2015) The effective use of the piston effect, natural cold sources, and energy saving in Beijing subways. Adv Mech Eng 5:371785 Li B, Han ZW, Bai CG, Hu HH (2019) The influence of soil thermal properties on the operation performance on ground source heat pump system. Renew. Energy 141:903–913 Liang B, Zhao NY (2011) A study on temperature distribution of surrounding rock and mechanical characteristics of lining of Monglian tunnel under high geothermal. Int Conf Civil Eng Build Mater (CEBM) CHINA 255–260:2594–2600 Liu W, Qin Y (2017) Multi-physics coupling model of coal spontaneous combustion in longwall gob area based on moving coordinates. Fuel 188:553–566 Mao YHF, Liu HX (1993) The heating value and load calculation for the subway. J Tunn Translat 8:16–25 Ogunleye O, Singh RM, Cecinato F, Chan Choi J (2020) Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature. Renew. Energy 146:2646–2658 Ou YQ, Jiang Y, Zhu YX, Zhao B (2002) Research about the critical ventilation speed on the blocking working condition of metro tunneling section (I). Metro Light Rail 2:34–41 Pitilakis K (2009) Seismic design of shallow immersed tunnels and underground metro stations. International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Tokyo, JAPAN pp. 239-240. Qin YP, Jia JY, Liu W, Yang XB (2013) Four finite volume schemes for heat transfer problems. J Liaoning Tech Univ 32:763–767 Qin YP, Song HT, Wu JS, Bai YX, Dong ZY, Ye F (2015) Analysis of surrounding rock heat dissipation for trapezoid roadway by finite-volume method. J Liaoning Tech Univ 34:898–904 Qin YP, Song HT, Wu JS, Dong ZY (2015) Numerical analysis of temperature field of surrounding rock under periodic boundary using finite volume method. J China Coal Soc 40:1541–1549 Revesz A, Chaer I, Thompson J, Mavroulidou M, Gunn M, Maidment G (2016) Ground source heat pumps and their interactions with underground railway tunnels in an urban environment: A review. Appl. Therm. Eng. 93:147–154 Shi CH, Cao CY, Lei MF (2017) An analysis of the ground deformation caused by shield tunnel construction combining an elastic half-space model and stochastic medium theory. KSCE J. Civ. Eng. 21:1933–1944 Strub F, Castaing-Lasvignottes J, Strub M, Pons M, Monchoux F (2005) Second law analysis of periodic heat conduction through a wall. Int. J. Therm. Sci. 44:1154–1160 Sun C, Shu SM, Ding GZ, Zhang XQ, Hu XH (2013) Investigation of time lags and decrement factors for different building outside temperatures. Energy Build. 61:1–7 Tan XJ, Chen WZ, Yang DS, Dai YH, Wu GJ, Yang JP, Yu HD, Tian HM, Zhao WS (2014) Study on the influence of airflow on the temperature of the surrounding rock in a cold region tunnel and its application to insulation layer design. Appl. Therm. Eng. 67:320–334 Tong L, Hu ST, Lu S, Wang YM (2019) Study on heat transfer performance of metro tunnel capillary heat exchanger. Sust. Cities Soc. 45:683–685 Tong Z, Cao T, Zang G, Hu S, Liu G, Wang Y (2020) Performance analysis of capillary front-end heat exchanger for subway tunnel. Appl Therm Eng 174:115360 Tong LH (2005) Study on energy saving control of thermal environment of Beijing Metro Line 1 and 2. The 13th National HVAC Technical Information Network Technology Exchange Conference, China, pp. 435-440 Transportation USDo (1975) Subway environmental design handbook—V.1—Principles and applications. Unver B, Agan C (2003) Application of heat transfer analysis for frozen food storage caverns. Tunn. Undergr. Space Technol. 18:7–17 Wang Y, Li XF (2018) STESS: subway thermal environment simulation software. Sust. Cities Soc. 38:98–108 Wang ZM, Zhang W, Lei CZ, Ding PL, Sun K (2014) Numerical prediction of the long-term soil temperature variations around shallow sections of cross-river road tunnels. J Southeast Univ 30:480–488 Wang YC, Feng HR, Xi XY (2017) Monitoring and autonomous control of Beijing Subway HVAC system for energy sustainability. Energy Sustain Dev. 39:1–12 Wu W, Li XZ, Hu ZH, Xiao L (2008) Calculating methods of heat transfer quantity through surrounding rocks in metro design. Chin J Undergr Space Eng 4:89–93 Xiaozhao L, Zhiyong X, Hengjun Q, Juan M, Xuehua Z, Maojin D (2012) Monitoring and analysis of heat transfer through surrounding rocks of subway tunnel. Chin J Undergr Space Eng 8:105–110 Xu TY, Wang MN, Yu L, Lv C, Dong YC, Tian Y (2019) Research on the earth pressure and internal force of a high-fill open-cut tunnel using a bilayer lining design: a field test using an FBG automatic data acquisition system. Sensors. 19:1487–1505 Xu ZG, Du XL, Xu CS, Hao H, Bi KM, Jiang JW (2019) Numerical research on seismic response characteristics of shallow buried rectangular underground structure. Soil Dyn. Earthq. Eng. 116:242–252 Xu ZH (2002) Determination of air conditioning loads and the loads analysis of ice storge system in subway. Refrigeration & Air-condition 01:11–14 Yu WB, Lu Y, Han FL, Liu YZ, Zhang XF (2018) Dynamic process of the thermal regime of a permafrost tunnel on Tibetan Plateau. Tunn. Undergr. Space Technol. 71:159–165 Yuan YP, Gao XK, Wu HW, Zhang ZJ, Cao XL, Sun LL, Yu NY (2017) Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development. Energy 119:817–833 Zhang Y, Li XF (2018) Heat transfer formalism using GFM and FEM in underground tunnels. Build Environ 143:717–726 Zhang Y, Li XF (2019) Response-surface-model based on influencing factor analysis of subway tunnel temperature. Build. Environ. 160:106140 Zhang Y, Li X (2020) Monitoring and analysis of subway tunnel thermal environment: a case study in Guangzhou, China. Sust. Cities Soc. 55:102057 Zhang GZ, Xia CC, Sun M, Zou YC, Xiao SG (2013) A new model and analytical solution for the heat conduction of tunnel lining ground heat exchangers. Cold Reg. Sci. Tech. 88:59–66 Zhang H, Zhu CG, Zheng WD, You SJ, Ye TZ, Xue P (2016) Experimental and numerical investigation of braking energy on thermal environment of underground subway station in China’s northern severe cold regions. Energy 116:880–893 Zhang H, Cui T, Liu MZ, Zheng WD, Zhu CG, You SJ, Zhang YZ (2017) Energy performance investigation of an innovative environmental control system in subway station. Build. Environ. 126:68–81